Electrical, optical and structural characterization of interfaces containing poly(3-alkylthiophenes) (P3ATs) and polydiphenylamine on ITO/TiO2: interaction between P3ATs polymeric segments and TiO2
Main Article Content
Abstract
With the aim of studying the use of conjugated polymers poly(3-methylthiophene) (P3MT), poly(3-hexylthiophene) (P3HT) and polydiphenylamine (PDPA) to make up the active layer of inverted organic solar cells forming the interface with TiO2, and also help shed light on the optical and electronic properties applied to develop this technology, the interfaces between films containing P3MT, P3HT and PDPA on ITO electrode were electrochemically prepared, after chemically depositing a film of TiO2. The systems under investigation were designated ITO/TiO2/P3MT, ITO/TiO2/PDPA/P3MT, ITO/TiO2/PDPA, ITO/TiO2/P3HT and ITO/TiO2/PDPA/P3HT and characterized by Raman techniques (Spectroscopy and Microscopy), Electrochemical Impedance Spectroscopy (EIS) and Photoluminescence (PL). In this study, the aromatic, semiquinone and quinone segments in the polymer matrices of the poly(3-alkylthiophenes) (P3ATs) and PDPA at these interfaces were monitored and characterized by comparison with films of their homopolymers by means of Raman spectroscopy and EIS. Raman imaging demonstrates that the P3MT film can be incorporated into the titanium oxide crystalline lattice. The systems containing P3MT or P3HT were found to strongly interact with the TiO2, stabilizing the P3AT radical cation segments, and the presence of PDPA destabilized this interaction. These findings were complemented by low-temperature (15 K) PL spectra, revealing a reduction in the intensity and displacement of the band associated with radical cation emission, observed in the absence of TiO2 in the system under investigation.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 302732/2020-9
References
M. Abdallaoui, N. Sengouga, A. Chala, A. F. Meftah, A. M. Meftah, Opt. Mater. 105 (2020) 109916 (https://doi.org/10.1016/j.optmat.2020.109916)
S. K. Hau, H.-L. Yip, A. K.-Y. Jen, Polym. Rev. 50 (2010) 474 (https://doi.org/10.1080/15583724.2010.515764)
D. W. Zhao, S. T. Tan, L. Ke, P. Liu, A. K. K. Kyaw, X. W. Sun, G. Q. Lo, D. L. Kwong, Sol. Energy Mater. Sol. Cells 94 (2010) 985 (https://doi.org/10.1016/j.solmat.2010.02.010)
C. J. Brabec, Sol. Energy Mater. Sol. Cells 83 (2004) 273 (https://doi.org/10.1016/j.solmat.2004.02.030)
A. D. Batista, W. Renzi, J. L. Duarte, H. De Santana, J. Electron. Mater. 47 (2018) 6403 (https://doi.org/10.1007/s11664-019-07268-6)
D. C. Bento, E. C. R. Maia, T. N. M. Cervantes, R. V. Fernandes, E. Di Mauro, E. Laureto, M. A. T. Da Silva, J. L. Duarte, I. F. L. Dias, H. De Santana, Synth. Met. 162 (2012) 2433 (https://doi.org/10.1016/j.synthmet.2012.12.006)
J. H. C. De Lima, D. F. Valezi, A. D. Batista, D. C. Bento, H. De Santana, J. Mater. Sci.: Mater. Electron. 29 (2018) 6511 (https://doi.org/10.1007/s10854-018-8633-z)
M. M. Kubota, H. De Santana, J. Electron. Mater. 50 (2021) 1167 (https://doi.org/10.1007/s11664-020-08685-8)
M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem Rev 95 (1995) 69 (https://doi.org/10.1021/cr00033a004)
M.K. Nazeeruddin, A. Kay, I. Rodício, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, J Am Chem Soc 115 (1993) 6382 (https://doi.org/10.1021/ja00067a063)
S. Quillard, G. Louarn, J. P. Buisson, S. Lefrant, J. Masters, A. G. MacDiarmid, Synth. Met. 50 (1992) 525 (https://doi.org/10.1016/0379-6779(92)90208-Z)
X. Feng, X. Wang, Thin Solid Films 519 (2011) 5700 (https://doi.org/10.1016/j.tsf.2011.03.043)
M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant, I. Baltog, J. Raman Spectrosc. 29 (1998) 825 (https://doi.org/10.1002/(SICI)1097-4555(199809)29:9<825::AID-JRS309>3.0.CO;2-2)
G. Louarn, J. Y. Mevellec, J. P. Buisson, S. Lefrant, Synth. Met. 55-57 (1993) 587 (https://doi.org/10.1016/0379-6779(93)90996-A)
H. De Santana, M. L. A. Temperini, J. C. Rubim, J. Electroanal. Chem. 356 (1993) 145 (https://doi.org/10.1016/0022-0728(93)80516-K)
E. M. Therézio, J. L. Duarte, E. Laureto, E. Di Mauro, I. F. L. Dias, A. Marletta, H. De Santana, J. Phys. Org. Chem. 24 (2011) 640 (https://doi.org/10.1002/poc.1802).