Study of the adsorption process between the phenolic compound catechin and the dietary fiber zymosan A: The influence of pH and concentration Scientific paper

Main Article Content

Petra Matić
https://orcid.org/0000-0003-0804-1280
Daniela Kenjerić
https://orcid.org/0000-0002-4847-6599
Lidija Šoher
https://orcid.org/0000-0001-8332-4796
Lidija Jakobek
https://orcid.org/0000-0002-4846-327X

Abstract

Polyphenolic compounds have shown various beneficial effects on human health as well as certain bioactivities such as interactions with dietary fiber. Factors that can influence their interactions with dietary fibers include the pH value, the polyphenolic compound concentration and compound stability. The aim of this work was to study the interactions between the polyphenolic compound catechin and the dietary fiber zymosan A from yeast through inves­tigation of the adsorption process. The catechin stability and the influence of concentration and pH value on interactions were investigated. Catechin showed the lowest stability at pH 7.0 with degradation ratio from 6 to 15 %. The lowest adsorption capacity was at pH 7.0, then higher in water and the highest at pH 1.5. A Dubinin–Radushkevich adsorption model fit to the data and FTIR ana­lysis indicates the presence of physical interactions between catechin and zymosan A. This study can contribute to better understanding of interactions of polyphenols and dietary fiber for possible design of functional food, or to inc­rease bioaccessibility of polyphenols.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
P. Matić, D. Kenjerić, L. Šoher, and L. Jakobek, “Study of the adsorption process between the phenolic compound catechin and the dietary fiber zymosan A: The influence of pH and concentration: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 9, pp. 1177–1190, Sep. 2024.
Section
Physical Chemistry

References

F. Truzzi, C. Tibaldi, Y. Zhang, G. Dinelli, E. D’Amen, Int. J. Mol. Sci. 2 (2021) 5541 (https://doi.org/10.3390/ijms22115514)

L. Jakobek, P. Matić, Trends Food Sci. Technol. 83 (2019) 235 (https://doi.org/10.1016/j.tifs.2018.11.024)

S. Ho, Y. Y. Thoo, D. J. Young, L. F. Siow, Food Chem. 275 (2019) 594 (https://doi.org/10.1016/j.foodchem.2018.09.117)

Z. Y. Cai, X. M. Li, J. P. Liang, L. P. Xiang, K. R. Wang, Y. L. Shi, R. Yang, M. Shi, J. H. Ye, J. L. Lu, X. Q. Zheng, Y. R. Liang, Molecules 23 (2018) 2346 (https://doi.org/10.3390/molecules23092346)

V. K. Ananingshig, A. Sharma, W. Zhou, Food Res. Int. 50 (2013), 469 (https://doi.org/10.1016/j.foodres.2011.03.004)

A. P. Neilson, A. S. Hopf, B. R. Cooper, M. A. Pereira, J. A. Bomser, M. G. Ferruzzi, J. Agric. Food Chem. 55 (2007) 8941 (https://doi.org/10.1021/jf071645m)

Q. V. Vuong, C. E. Stathopoulos, M. H. Nguyen, J. B. Golding, P. D. Roach, Food Rev. Int. 27 (2011) 227 (https://doi.org/10.1080/87559129.2011.563397)

A. E. Quirós-Sauceda, H. Palafox-Carlos, S. G. Sáyago-Ayerdi, J. F. Ayala-Zavala, L. A. Bello-Perez, E. Álvarez-Parrilla, L. A. de la Rosa, F. A. González-Córdova, G. A. González-Aguilar, Food Funct. 5 (2014) 1063 (https://doi.org/10.1039/C4FO00073K)

G. Venkatachalam, A. Senthilkumar, M. Doble, ACS Omega 5 (2020), 15973 (https://doi.org/10.1021/acsomega.0c01243)

T. Miura, N. Ohno, N. N. Miura, Y. Adachi, S. Shimada, T. Yadomae, FEMS Microbiol. Immunol. 24 (1999) 131 (https://doi.org/10.1111/j.1574-695X.1999.tb01274.x)

M. Salgado, S. Rodríguez-Rojo, R. L. Reis, M. José Cocero, A. R. C. Duarte, J. Supercrit. Fluids 127 (2017) 158 (https://doi.org/10.1016/j.supflu.2017.04.006)

A. Yiannikouris, J. Francois, L. Poughon, C.-G. Dussap, G. Bertin, G. Jeminet, J.-P. Jouany, J. Agric. Food Chem. 52 (2004) 3666 (https://doi.org/10.1021/jf035127x)

A. Yiannikouris, G. Andre, A. Poughon, J. Francois, C.-G. Dussap, G. Jeminet, G. Bertin, J.-P. Jouany, Biomacromolecules 7 (2006) 1147, (https://doi.org/10.1021/bm050968t)

T.R. Falcão, C. A. O. Rodrigues, A. A. de Araújo, C. A. A. X. de Medeiros, L. A. L. Soares, M. R. A. Ferreira, R. C. Vasconcelos, R. F. de Araújo Júnior, M. L. D. de Sousa Lopes, G. C. B. Guerra, BMC Complement Altern. Med. 19 (2019) 1 (https://doi.org/10.1186/s12906-019-2454-3)

P. Matić, Š. Ukić, L. Jakobek, Chem. Biochem. Eng. Q. 35 (2021) 177 (https://doi.org/10.15255/CABEQ.2020.1902)

A. Siemińska-Kuczer, M. Szymańska-Chargot, A. Zdunek, Food Chem. 373 (2022) 131487 (https://doi.org/10.1016/j.foodchem.2021.131487)

Y. Liu, D. Yiang, L. Sanguansri, Y. Cai, X. Le, Food Res. Int. 112 (2018) 225 (https://doi.org/10.1016/j.foodres.2018.06.044)

Y. Liu, D. Yiang, L. Sanguansri, M. A. Augustin, Food Chem. 271 (2019) 733 (https://doi.org/10.1016/j.foodchem.2018.08.005)

N. Li, L. S. Taylor, M. G. Ferruzzi, L. J. Mauer, J. Agric. Food Chem. 60 (2012) 12531 (https://doi.org/10.1021/jf304116s)

Y. Narita, K. Inouye, J. Agric. Food Chem. 61 (2013) 966 (https://doi.org/10.1021/jf304105w)

M. Shi, Y. Nie, X. Q. Zheng, J. L. Lu, Y. R. Liang, J. H. Ye, Molecules 21 (2016) 1345 (https://doi.org/10.3390/molecules21101345)

Z. Xu, L. Wei, Z. Ge, W. Zhu, Eur. Food Res. Technol. 240 (2015) 707 (https://doi.org/10.1007/s00217-014-2375-9)

M. L. Soto, A. Moure, H. Domínguez, J. C. Parajó, J. Food Eng. 105 (2011) 1 (https://doi.org/10.1016/j.jfoodeng.2011.02.010)

R. Gao, H. Liu, Z. Peng, Z. Wu, Y. Wang, G. Zhao, Food Chem., B 132 (2012) 1936 (https://doi.org/10.1016/j.foodchem.2011.12.029)

Z. Wu, H. Li, J. Ming, G. Zhao, J. Agric. Food Chem. 59 (2011) 378 (https://doi.org/10.1021/jf103003q)

J. Herrero-Martínez, M. Sanmartin, M. Rosés, E. Bosch, C. Ràfols, Electrophor. 26 (2005) 1886 (https://doi.org/10.1002/elps.200410258)

T. Raab, D. Barron, F. A. Vera, V. Crespy, M. Oliveira, G. Williamson, J. Agric. Food Chem. 58 (2010) 2138 (https://doi.org/10.1021/jf9034095)

Y. Gao, R. Yiang, J. Qie, J. Chen, D. Xu, W. Liu, Q. Gao, Carbohydr. Polym., A 90 (2012) 1411 (https://doi.org/10.1016/j.carbpol.2012.05.096)

H. T. Simonsen, M. S. Nielsen, N. J. Christensen, U. Christensen, T. V. La Cour, M. S. Motawia, B. P. M. Jespersen, S. B. Engelsen, B. L. Møller, J. Agric. Food Chem. 57 (2009) 2056 (https://doi.org/10.1021/jf802057v)

M. Veverka, T. Dubaj, J. Gallovič, V. Jorík, E. Veverková, M. Mičušík, P. Šimon, J. Funct. Foods 8 (2014) 309 (https://doi.org/10.1016/j.jff.2014.03.032)

A. M. Mendoza-Wilson, D. Glossman-Mitnik, J. Mol. Struct. 761 (2006) 97 (https://doi.org/10.1016/j.theochem.2006.01.001)

M. Krysa, M. Szymańska-Chargot, A. Zdunek, Food Chem. 393 (2022) 133430 (https://doi.org/10.1016/j.foodchem.2022.133430)

A. Semalty, M. Semalty, D. Sing, M. S. M. Rawat, J. Incl. Phenom. Macrocycl. Chem. 67 (2010) 253 (https://doi.org/10.1007/s10847-009-9705-8).