Investigation of adsorption properties of SF6 decomposed gases (SO2 and SO2F2) on pristine and Ti-decorated SWCNT surfaces: A DFT study

Main Article Content

Elham Gholamrezai Kohan
https://orcid.org/0009-0001-1537-8124
Hossein Mohammadi-Manesh
https://orcid.org/0000-0003-2825-4099
Forough Kalantari Fotooh
https://orcid.org/0000-0002-3905-0705

Abstract

DFT calculations were employed to investigate the adsorption of gases produced from SF6 decomposition (SO2 and SO2F2) on pristine and Ti-decorated single-walled carbon nanotubes (Ti-(8, 0) SWCNT). All structures were relaxed and their structural and electronic properties were investigated before and after gas adsorption on the surface of the nanotubes.  (Ti-(8, 0) SWCNT) was found to have high chemisorption sensitivity to Ti, SO2F2, and SO2 adsorptions on its surface. The electronic properties of (8, 0) SWCNT were altered from semiconductor to metallic upon decoration with Ti, as demonstrated by calculated band structures and density of states (DOS). SO2F2 and SO2 adsorption on the surface of (Ti-(8, 0) SWCNT) from different sides transformed the conductor (Ti-(8, 0) SWCNT) into a semiconductor nanotube. To more carefully study the nature of adsorption, partial density of states (PDOS) calculations were also made. Additionally, Ti decoration induced a magnetization of approximately 2.61 μB in (8, 0) SWCNT, which disappeared after gas adsorption.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
E. Gholamrezai Kohan, H. Mohammadi-Manesh, and F. Kalantari Fotooh, “Investigation of adsorption properties of SF6 decomposed gases (SO2 and SO2F2) on pristine and Ti-decorated SWCNT surfaces: A DFT study”, J. Serb. Chem. Soc., Apr. 2024.
Section
Theoretical Chemistry

References

I. Sauers, H. W. Ellis, L. G. Christophorou, IEEE Trans. Elect. Insul. 2 (1986) 111 (https://doi.org/10.1109/TEI.1986.348932)

X. Zhang, B. Yang, W. Liu, J. Zhang, Procedia Engineering. 29 (2012) 4107 (https://doi.org/10.1016/j.proeng.2012.01.628)

S. Iijima, Nature 354 (1991) 56 (https://doi.org/10.1038/354056a0)

D. R. Kauffman, A. Star, Angew. Chem. Int. Ed. 47 (2008) 6550 (https://doi.org/10.1002/anie.200704488)

R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, G. Wolf, J. Power Sources 159 (2006) 781 (https://doi.org/10.1016/j.jpowsour.2006.03.047)

S. Demir, M. F. Fellah, Surf. Sci. 701 (2020) 121689 (https://doi.org/10.1016/j.susc.2020.121689)

J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622 (https://doi.org/10.1126/science.287.5453.622)

J. Zhao, A. Buldum, J. Han, J. P. Lu, J. Nanotech. 13 (2002) 195 (https://doi.org/10.1088/0957-4484/13/2/312)

X. Zhou, W. Q. Tian, X. L. Wang, Sens. Act. B: Chem. 151 (2010) 56 (https://doi.org/10.1016/j.snb.2010.09.054)

G. Gecim, & M. Ozekmekci, Surf. Sci. 711 (2021) 121876 (https://doi.org/10.1016/j.susc.2021.121876)

M. Patrignani, J. Juan, O. Nagel, W. Reimers, R. Luna, P. V. Jasen, Pow. Tech. (2024) 119691 (https://doi.org/10.1016/j.powtec.2024.119691)

P. O. Krasnov, T. V. Basova, A. Hassan, Appl. Surf. Sci. 457 (2018) 235 (https://doi.org/10.1016/j.apsusc.2018.06.282)

W. Li, J. J. Ma, P. Liu, Z. L. Pan, Q. Y. He, Appl. Surf. Sci. 335 (2015) 17 (https://doi.org/10.1016/j.apsusc.2015.01.181)

L. L. Yu, S. Zhang, Q. Dong, X. Z. Meng, W. Q. Tian, J. Comput. Theor. Nanosci. 8 (2011) 1811 (https://doi.org/10.1166/jctn.2011.1887)

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, A. DalCorso, S. deGironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys: Condens. Matter. 21 (2009) 395502 (https://doi.org/10.1088/0953-8984/21/39/395502)

J. P. Perdew, K. Burke, M. Ernzerhof, J. Phys. Rev. Lett. 77 (1996) 3865 (https://doi.org/10.1103/PhysRevLett.77.3865)

H. J. Monkhorst, J. D. Pack, J. Phys. Rev. B. 13 (1976) 5188 (https://doi.org/10.1103/PhysRevB.13.5188)

S. F. Boys, F. G. M. P. Bernardi, J. Mol. Phys. 19 (1970) 553 (https://doi.org/10.1080/00268977000101561)

E. Sanville, S. D. Kenny, R. Smith, G. Henkelman, J. Comp. Chem. 28 (2007) 899 (http://doi.org/10.1002/jcc.20575)

W. Tang, E. Sanville, G. Henkelman, J. Phys.: Cond. Matt. 21 (2009) 084204 (https://doi.org/10.1088/0953-8984/21/8/084204)

X. Zhang, Y. Gui, Z. Dai, Appl. Surf. Sci. 315 (2014) 196 (https://doi.org/10.1016/j.apsusc.2014.07.056)

X. Zhang, J. Zhang, J. Tang, B. Yang, J. Comp. Theor. Nanosci. 9 (2012) 1096 (https://doi.org/10.1166/jctn.2012.2149)

F. Mei, X. Ma, Y. Bie, G. Xu, J. Theor. Comp. Chem. 16 (2017) 1750065 (https://doi.org/10.1142/S0219633617500651)

K. W. Kayang, E. Nyankson, J. K. Efavi, V. K. Apalangya, B. I. Adetunji, G. Gebreyesus, A. Yaya, Res. Phys. 12 (2019) 2100 (https://doi.org/10.1016/j.rinp.2019.02.062)

X. Zhang, Y. Gui, H. Xiao, Y. Zhang, App. Surf. Sci. 379 (2016) 47 (https://doi.org/10.1016/j.apsusc.2016.04.048)

H. Huang, Y. Yu, M. Zhang, App. Surf. Sci. 505 (2020) 144622 (https://doi.org/10.1016/j.apsusc.2019.144622)

H. Cui, X. Zhang, D. Chen, J. Tang, App. Surf. Sci. 447 (2018) 594 (https://doi.org/10.1016/j.apsusc.2018.03.232).