Enhancing longevity and performance: The effects of ZrO2 and TaC coatings on pistons in internal combustion engines Scientific paper

Main Article Content

Sathish Rengarajan
https://orcid.org/0000-0001-6971-0412
Rameeza Muhammed
https://orcid.org/0000-0002-9620-7182
D Vijayan
https://orcid.org/0000-0002-9581-1871
Muhammed Abrar
https://orcid.org/0000-0001-6194-7407

Abstract

Coating of pistons with ZrO2 and TaC improves their longevity and performance in internal combustion engines by enhancing the resistance to wear, heat and corrosion. In this study the plasma spray coating is performed on crown of the piston with the combination of the percentage composition namely, 95 % ZrO2 + 5 % TaC, 98 % ZrO2 + 2 % TaC and 100 % ZrO2. Among the three 95 % ZrO2 + 5 % TaC composition shows better results. The increase in ZrO2 content leads to the formation of a more integrated scale with fewer pores. Higher concentrations of ZrO2 in the coatings lead to the increased inter­action with discharge sparks and instability of the process. At elevated tempe­ratures, a two-phase material of cubic zirconium dioxide and hexagonal corun­dum was formed. The bonding strength of the coating is influenced by the addition of TaC and the power input during the spraying operation. The micro­structure of ZrO2 and TaC coatings on aluminium alloy is characterized by gra­nular structure, tightly packed pores and partially melted ZrO2 particles. The coating had a uniform structure with columnar and cluster-like elements, influ­enced by ZrO2 concentration.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Rengarajan, R. Muhammed, D. Vijayan, and M. Abrar, “Enhancing longevity and performance: The effects of ZrO2 and TaC coatings on pistons in internal combustion engines: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 7-8, pp. 1093–1105, Aug. 2024.
Section
Metallic Materials and Metallurgy

References

P.L. Fauchais, J.V.R. Heberlein, M.I. Boulos, Overview of Thermal Spray. In: Thermal Spray Fundamentals, Springer, Boston, MA, 2014, p. 17 (https://doi.org/10.1007/978-0-387-68991-3_2)

L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2. ed., Wiley, New York, 2008 (ISBN 978-0-471-49049-4)

Y. Hu, Q. Dou, Q. Fu, X. Li, L. Zhou, J. Zhang, Surf. Coat. Technol. 435 (2022) 128243 (https://doi.org/10.1016/j.surfcoat.2022.128243)

Y. Zhang, J. Sun, L. Guo, X. Zhang, D. Cui, Q. Fu, Corros. Sci. 205 (2022) 110423 (https://doi.org/10.1016/j.corsci.2022.110423)

Z. Fu, X. Li, Y. Ren, M. Zhang, X. Geng, Q. Zhu, J.G. Li, X. Sun, J. Eur. Ceram. Soc. 39 (2019) 4996 (https://doi.org/10.1016/j.jeurceramsoc.2019.07.011)

Z. L. Mao, X. J. Yang, S. L. Zhu, Z. D. Cui, Z. Y. Li, Y. Q. Liang, Mater. Express. 5 (2015) 518 (https://doi.org/10.1166/mex.2015.1267)

G. Feng, H. Li, X. Yao, L. Chen, Y. Yu, H. Wang, M. Chen, Ceram. Int. 47 (2021) 21721 (https://doi.org/10.1016/j.ceramint.2021.04.187)

N. B. Dahotre, S. J. S. Nayak, Surf. Coat. Technol. 194 (2005) 58 (https://doi.org/10.1016/j.surfcoat.2004.05.006)

Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Adv. Mater. 29 (2017) 1601727 (https://doi.org/10.1002/adma.201601727)

C. Suryanarayana, Research 10 (2019) 4219812 (https://doi.org/10.34133/2019/4219812)

V. Gvozdetskyi, B. Owens-Baird, S. Hong, and J.V. Zaikina, Mater. 12 (2018) 48 (https://doi.org/10.3390/ma12010048)

L. Wang, D. C. Li, J. S. Yang, F. Shao, X. H. Zhong, H. Y. Zhao, K. Yang, S. Y. Tao, Y. Wang, J. Eur. Ceram. Soc. 36 (2016) 1313 (https://doi.org/10.1016/j.jeurceramsoc.2015.12.038)

R. Darolia, Int. Mater. Rev. 58 (2013) 315 (https://doi.org/10.1179/1743280413Y.0000000019)

G. Sivakumar, S. S. Kumar, Alex. Eng. J. 53 (2014) 787 (https://doi.org/10.1016/j.aej.2014.08.003)

E. Vural, S. Ozel, B. Ozdalyan, Optoel. Adv. Mat. 8 (2014) 515 (https://oam-rc.inoe.ro/articles/the-investigation-of-microstructure-and-mechanical-properties-of-oxide-powders-coated-on-engine-pistons-surface/fulltext)

J. Liang, Z. Peng, R. Li, B. Wang, Ceram. Int. 49 (2023) 29133 (https://doi.org/10.1016/j.ceramint.2023.06.192)

L. K. Brar, G. Singla, O. P. Pandey, RSC. Adv. 5 (2015) 1406 (https://doi.org/10.1039/C4RA12105H)

R. Sukanya, S. Ramki, S. M. Chen, Microchim. Acta 187 (2020) 342 (https://doi.org/10.1007/s00604-020-04314-7)

D. Manoharan, A. Loganathan, V. Kurapati, V. J. Nesamony, Ultrason. Sonochem. 23 (2015) 174 (https://doi.org/10.1016/j.ultsonch.2014.10.004)

E. A. Abdel Wahab, K.S. Shaaban, R. Elsaman, E. S. Yousef, Appl. Phys., A 125 (2019) 869 (https://doi.org/10.1007/s00339-019-3166-8)

M. Kovaleva, I. Goncharov, V. Novikov, M. Yapryntsev, O. Vagina, V. Sirota, Y. Tyurin, O. Kolisnichenko, Mater. Today: Proc. 49 (2022) 1423 (https://doi.org/10.1016/j.matpr.2021.07.132)

I. Gulyaev, V. Kuzmin, E. Kornienko, S. Vashchenko, D. Sergachev, Mater. Today: Proc. 11 (2019) 430 (https://doi.org/10.1016/j.matpr.2019.01.008)

Z. U. Rehman, D. Choi, J. Magnes. Alloys 7 (2019) 555 (https://doi.org/10.1016/j.jma.2019.10.001)

J. Jakubowicz, M. Sopata, G. Adamek, P. Siwak, T. Kachlicki, Adv. Mater. Sci. Eng. 2018 (2018) 2085368 (https://doi.org/10.1155/2018/2085368)

B. A. Pint, Oxid. Met. 45 (1996) 1 (https://doi.org/10.1007/BF01046818)

X. Luo, X. Yang, Q. Huang, A. Shi, C. Fang, Y. Weng, J. Therm. Spray Technol. 30 (2021) 1582 (https://doi.org/10.1007/s11666-021-01215-w)

G. Shao, Q. Wang, X. Wu, C. Jiao, S. Cui, Y. Kong, J. Jiao, X. Shen, Corros. Sci. 126 (2017) 78 (https://doi.org/10.1016/j.corsci.2017.06.017)

Y. H. Cui, Z. C. Hu, Y. D. Ma, Y. Yang, C. C. Zhao, Y. T. Ran, P. Y. Gao, L. Wang, Y. C. Dong, D. R. Yan, Surf. Coat. Technol. 363 (2019) 112 (https://doi.org/10.1016/j.surfcoat.2019.02.059)

G. Shao, X. Wu, S. Cui, X. Shen, Y. Lu, Q. Zhang, Y. Kong, J. Alloys Compd. 690 (2017) 63 (https://doi.org/10.1016/j.jallcom.2016.08.073)

A. A. Ali, S. A. Shama, A. S. Amin, S. R. EL-Sayed, Mater. Sci. Eng., B 269 (2021) 115167 (https://doi.org/10.1016/j.mseb.2021.115167)

R. Vaßen, D.E. Mack, M. Tandler, Y. J. Sohn, D. Sebold, O. Guillon, J. Am. Cer. Soc. 104 (2021) 463 (https://doi.org/10.1111/jace.17452)

D. Wang, B. Yang, Z. Tian, L. Shen, Y. Huang, Trans. China Weld. 34 (2013) 10 (http://hjxb.hwi.com.cn/hjxb/en/article/id/20130303)

K. H. Kim, S. Hoon, J. H. Kim, K. W. Hong, J. Y. Park, J. Nanosci. Nanotechnol. 17 (2017) 8598 (https://doi.org/10.1166/jnn.2017.15171)

S. Samipour, H. Taghvaei, D. Mohebbi-Kalhori, M. R. Rahimpour, Surf. Innov. 8 (2019) 76 (https://doi.org/10.1680/jsuin.19.00030)

K. Zhang, Y. Zhu, Z. Chen, Z. Zhang, Y. Gao, Surf. Innov. 40 (2022) 1 (https://doi.org/10.1680/jsuin.22.01049).