Enhanced adsorption properties of Algerian bentonite modified by starch and glycerol for methylene blue and red methyl retention

Main Article Content

Fatima Zahra Benhachem
https://orcid.org/0000-0002-3328-4295
Hanane Mahroug
https://orcid.org/0000-0001-5383-2984
Meriem Bendjelloul
https://orcid.org/0000-0003-2308-0210
Abdelkader Miraoui
https://orcid.org/0009-0005-4622-9008
El Hadj Elandaloussi
https://orcid.org/0000-0003-2512-546X
Khalil Oukebdane
https://orcid.org/0000-0002-8537-4129
Rania Halfaoui
https://orcid.org/0009-0002-1583-6794

Abstract

This paper describes the preparation of novel bentonite-starch composites, and assesses their effectiveness as adsorbents for removing methylene blue (MB) and methyl red (MR) dyes from aqueous solutions. The adsorbents were characterized using X-ray diffraction and FTIR spectroscopy. The study aimed to optimize the removal process by investigating the effect of pH, adsorbent dose, contact time, and initial concentration. The sorption kinetics of MB and MR dyes were analyzed using the pseudo-first order and pseudo-second-order models. The experimental results indicate that the pseudo-second order kinetic model provides the best fit. The composite adsorbents exhibited a sorption capacity for MB, ranging from 146.21 mg g−1 to 157.58 mg g−1 for bentonite-starch (Bt@star) and bentonite-starch-glycerol (Bt@star@gly), respectively. The sorption capacity for MR dye was 426.38 mg g−1 for Bt@star and 309.82 mg g−1 for Bt@star@gly. Furthermore, the correlation coefficient values indicate that the adsorption of MB and MR by Bt@star@gly is best described by the Langmuir model. This unequivocally implies that the adsorbent surface is homogeneous, resulting in monolayer adsorption. The Langmuir model also accurately describes the adsorption of MB onto Bt@Star. However, the Freundlich isotherm model is the best fit for the adsorption of MR, indicating the existence of multilayer adsorption. Finally, this study demonstrates that the composite adsorbents prepared herewith exhibit excellent adsorption performance and can be a cost-effective alternative for treating colored wastewater.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
F. Z. Benhachem, “Enhanced adsorption properties of Algerian bentonite modified by starch and glycerol for methylene blue and red methyl retention”, J. Serb. Chem. Soc., Dec. 2024.
Section
Environmental Chemistry
Author Biographies

Fatima Zahra Benhachem, Department of Industrial Engineering, Faculty of Technology, University of Tlemcen, Tlemcen, Algeria

Laboratory of Separation and Purification Technologies, Department of Chemistry, Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria

Hanane Mahroug, Department of Hydraulic, Institute of Sciences and Technology, University center of Maghnia, Algeria

Laboratory of Separation and Purification Technologies, Department of Chemistry, Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria

Abdelkader Miraoui, Department of Industrial Engineering, Faculty of Technology, University of Tlemcen, Tlemcen, Algeria

Laboratory of Separation and Purification Technologies, Department of Chemistry, Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria

References

K. Nagaraja, M. Arunpandian, T. H. Oh, J. Polym. Environ. 32 (2024) 4538 (https://doi.org/10.1007/s10924-024-03225-5)

A. A. Adesibikan, S. S. Emmanuel , C. O. Olawoyin, P. Ndungu, J. Organ. Chem. 1010 (2024) 123087 (https://doi.org/10.1016/j.jorganchem.2024.123087)

S. Dutta, S. Adhikary, S. Bhattacharya, D. Roy, S. Chatterjee, A. Chakraborty, D. Banerjee, A. Ganguly, S. Nanda, P. Rajak, J. Env. Man. 353 (2024) 120103 (https://doi.org/10.1016/j.jenvman.2024.120103)

M. B. Etsuyankpa, A. U. Augustine, S. T. Musa, J. T. Mathew, H. Ismail, A. M. Salihu, A. Mamman, J. App. Sci. Env. Manag. 28 (2024) 5 (https://doi.org/10.4314/jasem.v28i5.28)

R. J. Kadhim, F. H. Al-Ani, Muayad Al-shaeli, Q. F. Alsalhy, A. Figoli, Membranes 10 (2020) 366 (https://doi.org/10.3390/membranes10120366)

I. A. Saleh, N. Zouari, & M. A. Al-Ghouti, Env. Techn. Innov. 19 (2020) 2352 (https://doi.org/10.1016/j.eti.2020.101026)

I. Mahboob, I. Shafiq, S. Shafique, P. Akhter, M. Munir, M. Saeed, M. S. Nazir, U.-e-S. Amjad, F. Jamil, N. Ahmad, Y.-K. Park, M. Hussain, Chemosphere 311 (2023) 137180 (https://doi.org/10.1016/j.chemosphere.2022.137180)

F. Z. Benhachem, M. Bendjelloul, H. Mahroug, A. Miraoui, E.H. Elandaloussi, K. Oukebdane, R. Halfaoui, J. Dispers. Sci. Technol. (2024) (https://doi.org/10.1080/01932691.2024.2378193)

L. Sablii, O. Obodovych, V. Sydorenko, J. Serb. Chem. Soc. (2024) (https://doi.org/10.2298/JSC231206014S)

A. Miraoui, L. Mitiche, F.Z. Benhachem, S. Feddane, M. Bendjelloul, E.H. Elandaloussi, M.A. Didi, Iran. J. Chem. Chem. Eng. 43 (2024) 3989 (https://doi.org/10.30492/ijcce.2024.2025988.6527)

S. Lin, Z. Song, G. Che, A. Ren, P. Li, C. Liu, J. Zhang, Micro. Meso. Mater. 193 (2014) 27 (https://doi.org/10.1016/j.micromeso.2014.03.004)

H. Gadouri, K. Harichane, M. Ghrici, Per. Poly. Civ. Eng. 61 (2017) 256 (https://doi.org/10.3311/PPci.9359)

S. Mishra, L. Cheng, A. Maiti, J. Env. Chem. Eng. 9 (2021) 104901 (https://doi.org/10.1016/j.jece.2020.104901)

R. Marouf, N. Dali, N. Boudouara, F. Ouadjenia, F. Zahaf, Study of Adsorption Properties of Bentonite Clay in Montmorillonite Clay, Ed. F. Uddin, IntechOpen. (2021) (https://doi.org/10.5772/intechopen.96524)

F. Bergaya, G. Lagaly, Dev.Clay Sci. 1 (2006) 1 (https://doi.org/10.1016/S1572-4352(05)01001-9)

R. Zhu, Q. Chen, Q. Zhou, Y. Xi, J. Zhu, H. He, App. Clay Sci. 123 (2016) 239 (https://doi.org/10.1016/j.clay.2015.12.024)

E. M. Ö. Kaya, A. S. Özcan, Ö. Gök, A. Özcan, Adsorption 19 (2013) 879 (https://doi.org/10.1007/s10450-013-9542-3)

Z. Baouch, K.I. Benabadji, B. Bouras, Phys. Chem. Res. 8 (2020) 767 (https://doi.org/10.22036/pcr.2020.234691.1787)

L. Wang, A. Wang, J. Haz. Mat. 160 (2008) 173 (https://doi.org/10.1016/j.jhazmat.2008.02.104)

Ö. Açışlı, S. Karaca, A. Gürses, App. Clay Sci. 142 (2017) 90 (https://doi.org/10.1016/j.clay.2016.12.009)

S. Yang, M. Gao, Z. Luo, Chem. Eng. J. 256 (2014) 39 (https://doi.org/10.1016/j.cej.2014.07.004)

A. E. Angkawijaya, S. P. Santoso, V. Bundjaja, F. E. Soetaredjo, C. Gunarto, A. Ayucitra, Y. Ju, A.W. Go, S. Ismadji, J. Hazard. Mat. 399 (2020) 123130 (https://doi.org/10.1016/j.jhazmat.2020.123130)

P. Huang, A. Kazlauciunas, R. Menzel, L. Lin, ACS Appl. Mater. Inter. 31 (2017) 26383 (https://doi.org/10.1021/acsami.7b08406)

Z. Taibi, K. Bentaleb, Z. Bouberka, C. Pierlot, M. Vandewalle, C. Volkringer, P. Supiot, U. Maschke, Crystals 13 (2023) 211 (https://doi.org/10.3390/cryst13020211)

S. Merad Boudia, K. I. Benabadji, B. Bouras, Phys. Chem. Res. 33 (2022) 143 (https://doi.org/10.22036/pcr.2021.290926.1925)

D. Heddi, A. Benkhaled, A. Boussaid, E. Chekchou Braham, Phys. Chem. Res. 7 (2019) 731 (https://doi.org/10.22036/pcr.2019.179510.1625)

K. Atkovska, B. Bliznakovska, G. Ruseska, S. Bogoevski, B. Boskovski, A. Grozdanov, J. Chem. Technol. Metall. 51 (2016) 215

B. Makhoukhi, M. Djab, M. A. Didi, J. Environ. Chem. Eng. 3 (2015) 1384 (https://doi.org/10.1016/j.jece.2014.12.012)

H. Mahroug, S. Belkaid, Phys. Chem. Res. 12 (2023) 73 (https://doi.org/10.22036/pcr.2023.374016.2244)

M. R. Nanda, Z. Yuan, W. Qin, M. A. Poirier, X. Chunbao, Austin J. Chem. Eng. 1 (2014) 1004 (https://austinpublishinggroup.com/chemical-engineering/fulltext/ace-v1-id1004.php)

S. Rangabhashiyam, N. Anu, N. Selvaraju, J. Envir. Chem. Engin. 1 (2013) 629 (https://doi.org/10.1016/j.jece.2013.07.014)

S. Z. Mohammadi, N. Mofidinasab, M.A. Karimi, A. Beheshti, Int. J. Environ. Sci. Technol. 17 (2020) 4815 ( https://doi.org/10.1007/s13762-020-02767-0 )

S. Z. Mohammadi, Z. Safari, N. Madady, Appl. Surf. Sci. 514 (2020) 145873 (https://doi.org/10.1016/j.apsusc.2020.145873 )

S. Z. Mohammadi, N. Mofidinasab, M. A. Karimi, F. Mosazadeh, Water. Sci. Technol. 82 (2020) 829 ( https://doi.org/10.2166/wst.2020.375 )

M. El-Habacha, A. Dabagh, S. Lagdali, Y. Miyah, G. Mahmoudy, F. Sinan, M. Chiban, S. Laich, M. Zerbet, Environ. Sci. Pollut. Res. (2023) (https://doi.org/10.1007/s11356-023-27413-3)

Y. A. B. Neolaka, Y. Lawa, J. Naat, A. C. Lalang, B. A. Widyaningrum, G. F. Ngasu, K. A. Niga, H. Darmokoesoemo, M. Iqbal, H. S. Kusuma, Results. Eng. 17 (2023) 100824 (https://doi.org/10.1016/j.rineng.2022.100824)

M. Aaddouz, K. Azzaoui, N. Akartasse, E. Mejdoubi, B. Hammouti, M. Taleb, R. Sabbahi, S. F. Alshahateet, J. Mol. Struct. 1288 (2023) 135807 (https://doi.org/10.1016/j.molstruc.2023.135807)

R. Wolski, A. Bazan-Wozniak, R. Pietrzak, Molecules 28 (2023) 6712 (https://doi.org/10.3390/molecules28186712)

T. Taweekarn, W. Wongniramaikul, C. Boonkanon, C. Phanrit, W. Sriprom, W. Limsakul, W. Towanlong, C. Phawachalotorn, A. Choodum, Polymers 14 (2022) 5543 (https://doi.org/10.3390/polym14245543)

N. A. Fathy, S. M. Mousa, R.M. Aboelenin, M.A. Sherief, A. S. Abdelmoaty, Arab. J. Geosci. 15 (2022) 1664 (https://doi.org/10.1007/s12517-022-10891-z)

R. Liu, Y. C. Li, Z. Zhao, D. Liu, J. Ren, Y. Luo, Front. Environ. Sci. 11 (2023) 1137284 (https://doi.org/10.3389/fenvs.2023.1137284)

S. Gul, M. Kanwal, R. A. Qazi, H. Gul, R. Khattak, M. S. Khan, F. Khitab, A. E. Krauklis, Water 14 (2022) 2831 (https://doi.org/10.3390/w14182831)

S. Deshmukh, N. S. Topare, S. Raut-Jadhav, P. V. Thorat, S. A. Bokil, A. Khan, Aqua Water. Infrastruct. Ecosyst. Soc. 71 (2022) 1351 (https://doi.org/10.2166/aqua.2022.119)

N. Ullah, Z. Ali, A. Sada Khan, B. Adalat, A. Nasrullah, S. Bahadar Khan, RSC. Adv. 14 (2024) 211 (https://doi.org/10.1039/D3RA07554K)

Y. N. Teixeira, J. M. C. Menezes, R. N. P. Teixeira, F. J. Paula Filho, T. M. B. F. Oliveira, Textiles 3 (2023) 52 (https://doi.org/10.3390/textiles301000)