Monte Carlo optimization-based QSAR modeling of Staphylococcus aureus inhibitory activity of coumarin-1,2,3-triazole hybrids Scientific paper

Main Article Content

Krishna N. Mishra
https://orcid.org/0009-0001-9613-7241
Harish C. Upadhyay
https://orcid.org/0000-0002-2545-4530
Poonam Verma
https://orcid.org/0009-0001-9591-8927

Abstract

In this study, 51 coumarin-1,2,3-triazole hybrids with known minimum inhibitory concentration (MIC) values against Staphylococcus aureus were used for the generation of a Monte Carlo based optimized QSAR model on CORrelations And Logic (CORAL) software. The entire dataset was divided into four different sets, namely the training set (Tr), the invisible training set (iTr), the calibration set (C), and the validation set (V) of three random splits. For each split, five models were generated using various combinations of SMILES, graphs, and hybrid optimal descriptors with various connectivity indices. Finally, fifteen models were obtained from three random, non-identical splits. For the best model from each split, the correlation coefficient (r2) ranged from 0.9672 to 0.8693, while the cross-validated correlation coefficient (Q2) ranged from 0.9478 to 0.8250. The mean absolute error (MAE) for the best models was less than 0.065. Additionally, favorable values of the index of ideality of correlation (IIC) and correlation intensity index (CII) were reported, justifying the robustness, reliability, and predictive potential of the developed models. Further, good and bad fingerprints were estimated based on correlation weights for structural attributes.

Downloads

Metrics

PDF views
110
Feb 07 '25Feb 10 '25Feb 13 '25Feb 16 '25Feb 19 '25Feb 22 '25Feb 25 '25Feb 28 '25Mar 01 '25Mar 04 '25Mar 07 '256.0
|

Article Details

How to Cite
[1]
K. N. Mishra, H. C. Upadhyay, and P. Verma, “Monte Carlo optimization-based QSAR modeling of Staphylococcus aureus inhibitory activity of coumarin-1,2,3-triazole hybrids: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 1, pp. 39–52, Feb. 2025.
Section
Theoretical Chemistry

Funding data

References

G. M. Cragg, D. J. Newman, Biochim. Biophys. Acta Gen. Subj. 1830 (2013) 3670 (https://doi.org/10.1016/j.bbagen.2013.02.008)

D. J. Newman, G. M. Cragg, J. Nat. Prod. 83 (2020) 770 (https://doi.org/10.1021/acs.jnatprod.9b01285)

H. C. Upadhyay, Lett. Drug Des. Discov. 20 (2023) 373 (https://doi.org/10.2174/157018082004230113144404)

H. C. Upadhyay, G. R. Dwivedi, M. P. Darokar, V. Chaturvedi, S. K. Srivastava, Planta Med. 78 (2012) 79 (https://doi.org/10.1055/s-0031-1280256)

M. Dickson, J. P. Gagnon, Discov. Med. 4 (2004) 172 (PMID: 20704981)

M. Dickson, J. P. Gagnon, Nat. Rev. Drug. Discov. 3 (2004) 417 (https://doi.org/10.1038/nrd1382)

H. C. Upadhyay, G. R. Dwivedi, S. Roy, A. Sharma, M. P. Darokar, S. K. Srivastava, ChemMedChem 9 (2014) 1860 (https://doi.org/10.1002/cmdc.201402027)

H. C. Upadhyay, B. S. Sisodia, H. S. Cheema, J. Agrawal, A. Pal, M. P. Darokar, S. K. Srivastava, Nat. Prod. Commun. 8 (2013) 1591 (https://doi.org/10.1177/1934578x1300801123)

H. C. Upadhyay, M. Singh, O. Prakash, F. Khan, S. K. Srivastava, D. U. Bawankule, SN Appl. Sci. 2 (2020) 2069 (https://doi.org/10.1007/s42452-020-03798-5)

M. Xiang, Y. Cao, W. Fan, L. Chen, Y. Mo, Comb. Chem. High Throughput Screen. 15 (2012) 328 (https://doi.org/10.2174/138620712799361825)

S. Surabhi, B. Singh, J. Drug Deliv. Therapeu. 8 (2018) 504 (https://doi.org/10.22270/jddt.v8i5.1894)

G. R. Dwivedi, H. C. Upadhyay, D. K. Yadav, V. Singh, S. K. Srivastava, F. Khan, N. S. Darmwal, M. P. Darokar, Chem. Biol. Drug. Des. 83 (2014) 482 (https://doi.org/10.1111/cbdd.12263)

M. Rudrapal, D. Chetia, J. Drug Deliv. Therapeu. 10 (2020) 225 (https://doi.org/10.22270/jddt.v10i4.4218)

P. Gramatica, QSAR Comb. Sci. 26 (2007) 694 (https://doi.org/10.1002/qsar.200610151)

OECD: OECD principles for the validation, for regulatory purposes, of (quantitative) structure-activity relationships models (2004)

E. Benfenati, A. A. Toropov, A. P. Toropova, A. Manganaro, R. Gonella Diaza, Chem. Biol. Drug. Des. 77 (2011) 471 (https://doi.org/10.1111/j.1747-0285.2011.01117.x)

A. T. K. Baidya, K. Ghosh, S. A. Amin, N. Adhikari, J. Nirmal, T. Jha, S. Gayen, New J. Chem. 44 (2020) 4129 (https://doi.org/10.1039/c9nj05825g)

K. Bagri, A. Kumar, M. Nimbhal, P. Kumar, Mol. Simul. 46 (2020) 777 (https://doi.org/10.1080/08927022.2020.1770753)

T. G. Kraljević, A. Harej, M. Sedić, S. K. Pavelić, V. Stepanić, D. Drenjančević, J. Talapko, S. Raić-Malić, Eur. J. Med. Chem. 124 (2016) 794 (https://doi.org/10.1016/j.ejmech.2016.08.062)

Y. L. Fan, X. Ke, M. Liu, J. Heterocycl. Chem. 55 (2018) 791 (https://doi.org/10.1002/jhet.3112)

H. C. Upadhyay, Curr. Top. Med. Chem. 21 (2021) 737 (https://doi.org/10.2174/1568026621666210303145759)

K. N. Mishra, H. C. Upadhyay, Frontiers Drug Discov. 2 (2022) 1072448 (https://doi.org/10.3389/fddsv.2022.1072448)

J. M. Madar, L. A. Shastri, S. L. Shastri, R. Guda, M. Holiyachi, N. S. Naik, S. Dodamani, S. Jalapure, V. A. Sungar, Chemical Data Collections 17–18 (2018) 219 (https://doi.org/10.1016/j.cdc.2018.09.005)

P. Yadav, B. Kumar, H. K. Gautam, S. K. Sharma, J. Chem. Sci. 129 (2017) 211 (https://doi.org/10.1007/s12039-016-1214-x)

S. Carmel Yesudass, P. Ranjan, H. P. Suresh, J. Heterocycl. Chem. 59 (2022) 309 (https://doi.org/10.1002/jhet.4385)

M. H. Shaikh, D. D. Subhedar, B. B. Shingate, F. A. Kalam Khan, J. N. Sangshetti, V. M. Khedkar, L. Nawale, D. Sarkar, G. R. Navale, S. S. Shinde, Med. Chem. Res. 25 (2016) 790 (https://doi.org/10.1007/s00044-016-1519-9)

S. M. Sutar, H. M. Savanur, C. Patil, G. M. Pawashe, G. Aridoss, K. M. Kim, R. G. Kalkhambkar, Chem. Data Coll. 28 (2020) 100480 (https://doi.org/10.1016/j.cdc.2020.100480)

A. V. Lipeeva, D. O. Zakharov, L. G. Burova, T. S. Frolova, D. S. Baev, I. V. Shirokikh, A. N. Evstropov, O. I. Sinitsyna, T. G. Tolsikova, E. E. Shults, Molecules 24 (2019) 2126 (https://doi.org/10.3390/molecules24112126)

M. N. Joy, Y. D. Bodke, S. Telkar, V. A. Bakulev, J. Mex. Chem. Soc. 64 (2020) 53 (https://doi.org/10.29356/jmcs.v64i1.1116)

X. M. Peng, K. V. Kumar, G. L. V. Damu, C. H. Zhou, Sci. China Chem. 59 (2016) 878 (https://doi.org/10.1007/s11426-015-0351-0)

P. Kumar, A. Kumar, J. Sindhu, SAR QSAR Environ. Res. 30 (2019) 63 (https://doi.org/10.1080/1062936X.2018.1564067)

A. A. Toropov, A. P. Toropova, Toxicol. Mech. Methods 29 (2019) 43 (https://doi.org/10.1080/15376516.2018.1506851)

A. A. Toropov, E. Benfenati, Curr. Drug. Discov. Technol. 4 (2007) 77 (https://doi.org/10.2174/157016307781483432)

A. Kumar, S. Chauhan, Arch. Pharm. (Weinheim) 350 (2017) e1600268 (https://doi.org/10.1002/ardp.201600268)

A. P. Toropova, A. A. Toropov, A. Roncaglioni, E. Benfenati, Molecules 28 (2023) 6587 (https://doi.org/10.3390/molecules28186587).