Chemical composition and bioactivities of Phellinus pini extracts, and quality evaluation of healthy drinks prepared from the mushroom

Main Article Content

Nguyen Thi Ngan
https://orcid.org/0000-0002-1512-0297
Trang H. D. Nguyen
https://orcid.org/0000-0003-4763-9859

Abstract

Phellinus pini, a mushroom species found in East Asian countries, is commonly consumed as a medicinal beverage known for its stomach-warming effects and purported ability to alleviate pain and tumors. In this study, P. pini was extracted using different methods (hot water, sonication, microwave, and soaking). The extracts were analyzed for phenolic and polysaccharide contents. Additionally, the extracts were evaluated for their antioxidant potential and ability to inhibit albumin denaturation. The results demonstrated that the extract obtained with hot water extraction contained the greatest amount of phenolics (105.98 ± 0.53 mg GAE/mL). The hot water and microwave extraction methods showed more effective in extracting polysaccharide from the mushroom. Moreover, the extract from the ultrasound extraction method presented the strongest antioxidant activity by scavenging DPPH and ABTS radicals by 41.26 and 97.84 %, respectively while the hot water extract exhibited the most potent ability to inhibit albumin denaturation by 96.40 %. Among the four healthy drinks formulated, the formulation with the greatest proportion of P. pini extract contained the highest total phenolic content, antioxidant activity, and the most favorable sensory overall liking. The findings deepen our understanding of the chemical composition and potential health-promoting properties of P. pini, as well as revealing new potential applications for the mushroom in the food and nutraceutical industries.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. T. Ngan and T. H. D. Nguyen, “Chemical composition and bioactivities of Phellinus pini extracts, and quality evaluation of healthy drinks prepared from the mushroom”, J. Serb. Chem. Soc., Oct. 2024.
Section
Analytical Chemistry

References

Y.-C. Dai, L.-W. Zhou, B.-K. Cui, Y.-Q. Chen, C. Decock, Appl. Microbiol. Biotechnol. 87 (2010) 1587 (https://doi.org/10.1007/s00253-010-2711-3)

Y. Gafforov, O. Mykchaylova, M. Ghobad-Nejhad, M. Tomšovský, M. Yarasheva, H. Hüseyin Doğan, S. Rapior, and L. Zhou, Ethnobiology of Uzbekistan (Ethnomedicinal Knowledge of Mountain Communities). Ethnobiology, Springer Nature, Basel, Switzerland, 2023 (https://doi.org/10.1007/978-3-031-23031-8)

T. K. Trinh, Preliminary list macrofungi of Vietnam, Ha Noi Academy of Agriculture Publisher, Ha Noi, Vietnam, 1996

T. Zhu, S.-H. Kim, C.-Y. Chen, Curr. Med. Chem. 15 (2008) 1330 (https://doi.org/10.2174/092986708784534929)

T.-Y. Song, H.-C. Lin, N.-C. Yang, M.-L. Hu, J. Ethnopharmacol. 115 (2008) 50 (https://doi.org/10.1016/j.jep.2007.09.001)

P. Roupas, J. Keogh, M. Noakes, C. Margetts, P. Taylor, J. Funct. Foods 4 (2012) 687 (https://doi.org/10.1016/j.jff.2012.05.003)

A. Lourenço, A. M. Lobo, B. Rodríguez, M.-L. Jimeno, Phytochemistry 43 (1996) 617 (https://doi.org/10.1016/0031-9422(96)00335-4)

S. M. Lee, S. M. Kim, Y. H. Lee, W. J. Kim, J. K. Park, Y. I. Park, W. J. Jang, H.-D. Shin, A. Synytsya, Macromol. Res. 18 (2010) 602 (https://doi.org/10.1007/s13233-010-0615-9)

P. Jiang, L. Yuan, G. Huang, X. Wang, X. Li, L. Jiao, L. Zhang, Int. J. Biol. Macromol. 93 (2016) 566 (https://doi.org/10.1016/j.ijbiomac.2016.09.020)

K. H. Im, J. Choi, S.-A. Baek, T. S. Lee, Mycobiology 46 (2018) 159-167 (https://doi.org/10.1080/12298093.2018.1461316)

H. Zhang, H. Ma, W. Liu, J. Pei, Z. Wang, H. Zhou, J. Yan, Carbohydr. Polym. 113 (2014) 380 (https://doi.org/10.1016/j.carbpol.2014.07.027)

S. Ghosh, S. Das, R. Saha, K. Acharya, Int. J. Med. Mushrooms 25 (2023) 53 (https://doi.org/10.1615/IntJMedMushrooms.2023050232)

J.-S. Kim, Prev. Nutr. Food Sci. 21 (2016) 263 (https://doi.org/10.3746/pnf.2016.21.3.263)

T. H. D. Nguyen, D. C. Vu, P. Q. P. Hanh, X. T. Vo, V. C. Nguyen, T. N. Nguyen, L. L. P. Nguyen, L. Baranyai, J. Agric. Food Res. 14 (2023) 100879 (https://doi.org/10.1016/j.jafr.2023.100879)

S. S. Nielsen, Total Carbohydrate by Phenol-Sulfuric Acid Method, in Food analysis laboratory manual, S.S. Nielsen, Ed., Kluwer Academic/Plenum Publishers, New York, USA, 2017, p. 137 (https://doi.org/10.1007/978-3-319-44127-6)

P. M. Tuan, N. T. Ngan, N. X. Ha, H. V. Trung, Trop. J. Nat. Prod. Res. 7 (2023) 5606 (https://doi.org/10.26538/tjnpr/v7i12.34)

T. H. D. Nguyen, D. C. Vu, N. T. Ngan, H. Tran-Trung, V. S. Dang, Anal. Lett. 57 (2023) 1666 (https://doi.org/10.1080/00032719.2023.2264422)

M. Rašeta, M. Popović, I. Beara, F. Šibul, G. Zengin, S. Krstić, M. Karaman, Chem. Biodivers. 18 (2021) e2000828 (https://doi.org/10.1002/cbdv.202000828)

M. Rašeta, M. Karaman, M. Jakšić, F. Šibul, M. Kebert, A. Novaković, M. Popović, Int. J.Food Sci Technol. 51 (2016) 2583 (https://doi.org/10.1111/ijfs.13243)

M. Rašeta, J. Mišković, S. Berežni, S. Kostić, M. Kebert, M. Matavulj, M. Karaman, Nat. Prod. Res. (2024) 1-8 (https://doi.org/10.1080/14786419.2024.2341300)

W. Xiaokang, J. G. Lyng, N. P. Brunton, L. Cody, J.-C. Jacquier, S. M. Harrison, K. Papoutsis, Biotechnol. Rep. 27 (2020) e00504 (https://doi.org/10.1016/j.btre.2020.e00504)

K. Papoutsis, P. Pristijono, J. B. Golding, C. E. Stathopoulos, M. C. Bowyer, C. J. Scarlett, Q. V. Vuong, Eur. Food Res. Technol. 244 (2018) 1353 (https://doi.org/10.1007/s00217-018-3049-9)

S. Bulam, M. Karadeniz, T. K. Bakır, S. Ünal, Acta Sci. Pol. Hortorum Cultus 21 (2022) 39 (https://doi.org/10.24326/asphc.2022.5.4)

P. Seephonkai, S. Samchai, A. Thongsom, S. Sunaart, B. Kiemsanmuang, K. Chakuton, Chin. J. Nat. Med. 9 (2011) 441 (https://doi.org/10.3724/SP.J.1009.2011.00441)

D. Vu, Egypt. J. Chem. 66 (2023) 581 (https://doi.org/10.21608/ejchem.2023.172356.7142)

N. Krsmanović, M. Rašeta, J. Mišković, K. Bekvalac, M. Bogavac, M. Karaman, O. S. Isikhuemhen, Antioxidants 12 (2023) 302 (https://doi.org/10.3390/antiox12020302)

L. Wang, C. L. Weller, Trends Food Sci. Technol. 17 (2006) 300 (https://doi.org/10.1016/j.tifs.2005.12.004)

W. Routray, V. Orsat, Food Bioprocess Technol. 5 (2012) 409 (https://doi.org/10.1007/s11947-011-0573-z)

S. Wasser, Appl. Microbiol. Biotechnol. 60 (2002) 258 (https://doi.org/10.1007/s00253-002-1076-7)

H. Thatoi, S. K. Singdevsachan, Afr. J. Biotechnol. 13 (2014) 523 (https://doi.org/10.5897/AJB2013.13446)

U. Lindequist, T. H. J. Niedermeyer, W.-D. Jülich, Evid. Based Complementary Altern. Med. 2 (2005) 285 (https://doi.org/10.1093/ecam/neh107)

N. Gao, W. Zhang, D. Hu, G. Lin, J. Wang, F. Xue, Q. Wang, H. Zhao, X. Dou, L. Zhang, Molecules 28 (2023) 5102 (https://doi.org/10.3390/molecules28135102)

P. He, Y. Zhang, N. Li, Food Funct. 12 (2021) 1856 (https://doi.org/10.1039/D0FO02342F)

Z. Xie, Y. Wang, J. Huang, N. Qian, G. Shen, L. Chen, Int. J.Biol. Macromol. 129 (2019) 61 (https://doi.org/10.1016/j.ijbiomac.2019.02.023)

G.-J. Huang, S.-S. Huang, J.-S. Deng, PloS ONE 7 (2012) e35922 (https://doi.org/10.1371/journal.pone.0035922)

C. Doguer, S. Yıkmış, O. Levent, M. Turkol, J. Food Process. Preserv. 45 (2021) e15436 (https://doi.org/10.1111/jfpp.15436)

K. D. Nguyen, C. M. Nguyen, D. A. Le, H. T. Huynh, M. T. Tran, A. T. N. Truong, T. H. D. Nguyen, D. C. Vu, L.-T. T. Nguyen, J. Agric. Food Res. 15 (2024) 101045 (https://doi.org/10.1016/j.jafr.2024.101045)

N. Mongkontanawat, D. Thumrongchote, Food Res. 5 (2021) 410 (https://doi.org/10.26656/fr.2017.5(4).259)

I. B. Leite, C. D. Magalhães, M. Monteiro, E. Fialho, Foods 10 (2021) 1525 (https://doi.org/10.3390/foods10071525)

T. Azami, M. Niakousari, S. M. B. Hashemi, L. Torri, LWT 91 (2018) 375 (https://doi.org/10.1016/j.lwt.2018.01.064).