Assessment of the concentration of toxic metals (aluminum, cadmium and manganese) in the soil and evergreen plant species at the Sastavci surface mine and its vicinity Scientific paper
Main Article Content
Abstract
The study aims to determine the concentration of Al3+, Cd2+ and Mn2+ in the soil and parts of evergreen plant species – juniper and white pine – at the surface mine Sastavci (Badanj) and its vicinity in order to determine the possibility of using evergreen plants as an ecological indicator or for phytoremediation. Globally, as a result of various anthropogenic activities such as traffic, agricultural activities, waste incineration, industrial production, mining, etc., it represents a serious problem leading to pollution with toxic and potentially toxic metal cations. One of the more innovative techniques used for the remediation of mining areas is phytoremediation. By applying phytoremediation, certain plant species in polluted areas have the ability to act as accumulators or hyperaccumulators, absorbing toxic metals from the soil through the plant roots and transporting them to the upper parts. This research has been conducted to determine the concentration of Al3+, Cd2+ and Mn2+ at the surface mine itself and its surroundings, as well as to monitor the distribution of metal cations in the system of roots, branches, needles, and fruits of the evergreen plant species – white pine and juniper. The results showed that the sampled soil was contaminated with Cd in zones I and II for both plant species, since the concentrations exceeded the limit values, while the concentration of Cd in zone III, as well as in the control zone was below the determination limits for both plant species. The concentration of Mn in the soil from the white pine and juniper zone was above the world average in all three zones, as well as in the control zone itself. The soil was most enriched with the analysed elements in the surface mine of zone I and zone II. According to the analysis of elements in the parts of white pine, roots, branches, needles and fruits, the highest concentration of Al was detected in the root in zone I, while the lowest concentration was recorded in the fruit (cones) in the control zone, an increased concentration of Cd was recorded in the branches in zones I and II, and the highest concentration of Mn was recorded in needles in zone II. The highest Al concentration was recorded in the juniper root in zone I and the lowest in the juniper fruit in the control zone, the Cd concentration was the highest in the juniper root zone I, and the lowest in the juniper fruit and the highest Mn concentration was recorded in the juniper needles in zone I. Based on the obtained values of the coefficient of biological absorption, it can be concluded that white pine is not suitable for phytoextraction or phytostabilization of the tested elements. The analysis of biological factors (bioconcentration, translocation and bioaccumulation factor) indicated a possible usage of juniper in phytoextraction for Cd only.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
L. Järup, Brit. Med. Bull. 68 (2003) 167 (https://doi.org/10.1093/bmb/ldg032)
B. Wei, L. Yang, Microchem. J. 94 (2010) 99 (https://doi.org/10.1016/j.microc.2009.09.014)
N. B. Milosavljević, M. Đ. Ristić, A. A. Perić-Grujić, J. M. Filipović, S. B. Štrbac, Z. Lj. Rakočević, M. T. Kalagasidis Krušić, J. Haz. Mat. 192 (2011) 846 (https://doi.org/10.1016/j.jhazmat.2011.05.093)
Z. Cong, S. Kang, Y. Zhang, X. Li, App. Geochem. 25 (2010) 1415 (https://doi.org/10.1016/j.apgeochem.2010.06.011)
V. D. Nica, M. Bura, I. Gergen, M. Harmanescu, D-M. Bordean, Chem. Cent. J. 6 (2012) 55 (https://doi.org/10.1186/1752-153x-6-55)
J. Suman, O. Uhlik, J. Viktorova, T. Macek, Front. Plant Sci. 1476 (2018). (https://doi.org/10.3389/fpls.2018.01476)
A. S. Mussina, G. U. Baitasheva, M. S. Kurmanbayeva, G. J. Medeuova, A. A. Mauy, E. M. Imanova, A. Zh. Kurasbaeva, Z. S. Rachimova, Y. S. Nurkeyev, K. Orazbayev, Israel J. Ecol. Evol. 64 (2018) 35 (http://doi.org/10.1163/22244662-06303005)
S. Adiloğlu, Heavy Metal Removal with Phytoremediation. in Advances in Bioremediation and Phytoremediation, Ed. N. Shiomi, InTech, (2018). (https://doi.org/10.5772/intechopen.70330)
Y. Hu, Z. Nan, J. Su, N. Wang, Env. Sci. Poll. Res. 20 (2013) 7194 (https://doi.org/10.1007/s11356-013-1711-0)
E. Osma, M. Elveren, G. Karakoyun, Air Qual. Atm. Health 10 (2017) 85 (https://doi.org/10.1007/s11869-016-0410-7)
M. P. Waalkes, Mut. Res. – Fund. Mol. Mech. Mutagen. 533 (2003) 107 (https://doi.org/10.1016/j.mrfmmm.2003.07.011)
J. Ding, G. He, W. Gong, W. Wen, W. Sun, B. Ning, S. Huang, K. Wu, C. Huang, M. Wu, W. Xie, H. Wang, Can. Epid. Biomark. Prevent. 18 (2009) 1720 (https://doi.org/10.1158/1055-9965.EPI-09-0115)
H. Chen, N. C. Giri, R. Zhang, K. Yamane, Y. Zhang, M. Maroney, M. Costa, J. Biol. Chem. 285 (2010) 7374 (https://doi.org/10.1074/jbc.M109.058503)
T. Schwerdtle, F. Ebert, C. Thuy, C. Richter, L. H. F. Mullenders, A. Hartwig, Chem. Res. Tox. 23 (2010) 432 (https://doi.org/10.1021/tx900444w)
Y. Asara, J. A. Marchal, E. Carrasco, H. Boulaiz, G. Solinas, P. Bandiera, M. A. Garcia, C. Farace, A. Montella, R. Madeddu, Int. J. Mol. Sci. 14 (2013) 16600 (https://doi.org/10.3390/ijms140816600)
M. Ovečka, T. Takáč, Biotec. Adv. 32 (2014) 73 (https://doi.org/10.1016/j.biotechadv.2013.11.011)
M. E. Morales, R. S. Derbes, C. M. Ade, J. C. Ortego, J. Stark, P. L. Deininger, A. M. Roy-Engel, PLoS One 11 (2016) e0151367 (https://doi.org/10.1371/journal.pone.0151367)
H. Jia, D. Hou, D. O’Connor, S. Pan, J. Zhu, N.S. Bolan, J. Mulder, J. Haz. Mat. 389 (2020) 121849 (https://doi.org/10.1016/j.jhazmat.2019.121849)
L. Wang, D. Hou, Z. Shen, J. Zhu, X. Jia, Y.S. Ok, F. M. G. Tack, J. Rinklebe, Crit. Rev. Env. Sci. Tech. 50 (2020) 2724 (https://doi.org/10.1080/10643389.2019.1705724)
D. O’Connor, X. Zheng, D. Hou, Z. Shen, G. Li, G. Miao, S. O’Connell, M. Guo, Env. Int. 130 (2019) 104945 (https://doi.org/10.1016/j.envint.2019.104945)
L. Ahrens, M. Shoeib, T. Harner, S. C. Lee, R. Guo, E. J. Reiner, Env. Sci. Techn. 45 (2011) 8098 (https://doi.org/10.1021/es1036173)
Li X. Zhang, X, Li, B, Wu, Y, Sun, H, Yang, Y. Env. Sci. Poll. Res. 24 (2017) 21660 (https://doi.org/10.1007/s11356-017-9781-z)
I. D. Pulford, C. Watson, Env. Int. 29 (2003) 529 (https://doi.org/10.1016/s0160-4120(02)00152-6)
E. Baltrenaite, P. Baltrenas, D. Butkus, A. Lietuvninkas, Phytoremediation (2015) 21 (https://doi.org/10.1007/978-3-319-10395-2_2)
C. Kole, Genome Mapping and Molecular Breeding in Plants, Springer, Berlin, 2007.
R. Muilu-Mäkelä, J. Vuosku, E. Läärä, M. Saarinen, J. Heiskanen, H. Häggman, T. Sarjala, Plant Physiol. Biochem. 88 (2015) 70 (https://doi.org/10.1016/j.plaphy.2015.01.009)
M. Pajak, W. Halecki, M. Gąsiorek, Chemosphere 168 (2017) 851 (https://doi.org/10.1016/j.chemosphere.2016.10.125)
M. Mleczek, P. Goliński, B. Waliszewska, A. Mocek, M. Gąsecka, M. Zborowska, Z. Magdziak, W.J. Cichy, B. Mazela, T. Kozubik, A. Mocek-Płóciniak, W. Moliński, P. Niedzielski, J. Env. Sci. Health, Part A 53 (2018) 1029 (https://doi.org/10.1080/10934529.2018.1471116)
A. Aidosov, G. Aidosov, N. Zaurbekov, N. Zaurbekova, G. Zaurbekova, I. Zaurbekov, Ekoloji 28 (2019) 349
G. Cheloni, V. I. Slaveykova, Environments 5 (2018) 1 (https://doi.org/10.3390/environments5120138)
FAO, Status of the World's Soil Resources. Google Scholar, (2015).
M. D. Mingorance, B. Valdés, S. R. Oliva, Env. Int. 33 (2007) 514 (http://dx.doi.org/10.1016/j.envint.2007.01.005)
ISO 2005, International Organisation for Standardisation, Soil Quality: Determination of pH, 10390:2005. ISO, Geneva.
N. S. Eash, T. J. Sauer, D. O'Dell, E. Odoi, Soil Science Simplified. Sixth edition. John Wiley & Sons, Inc., Hoboken, New Jersey (2016)
A. Zseni, H. Goldie, I. Bárány-Kevei, Acta Carsologica 32/1(5), (2003) 57 (https://doi.org/10.3986/ac.v32i1.364)
K. R. Reddy, Organic matter determination. In: Engineering properties of soils based on laboratory testing, Illinois, Chicago. Chicago, Illinois: Department of Civil and Materials Engineering University of Illinois at Chicago, (2002) 13-19
Y. Mao, S. Sang, S. Liu, J. Jia, Comptes Rendus Biologies 337 (2014) 332 (https://doi.org/10.1016/j.crvi.2014.02.008)
S. R. Oliva, A .J. F. Espinosa, Microchem. J. 86 (2007) 131 (https://doi.org/10.1016/j.microc.2007.01.003)
E. O. Fagbote, E. O. Olanipekun, Am.–Euras. J. Sci. Res. 5 (2010) 241 (https://idosi.org/aejsr/5(4)10/4.pdf)
A. Enuneku, E. Biose, L. Ezemonye, J. Env. Chem. Eng. 5 (2017) 2773 (https://doi.org/10.1016/j.jece.2017.05.019)
A. Christou, C. P. Theologides, C. Costa, I. K. Kalavrouziotis, S. P. Varnavas, J. Geochem. Exp. 178 (2017) 16 (https://doi.org/10.1016/j.gexplo.2017.03.012)
R. E. Mendoza, I. V. García, L. de Cabo, C. F. Weigandt, A. F. de Iorio, Sci. Tot. Env. 505 (2015) 555 (https://doi.org/10.1016/j.scitotenv.2014.09.105)
J. Nouri, B. Lorestani, N. Yousefi, N. Khorasani, A. H. Hasani, F. Seif, M. Cheraghi, Env. Earth Sci. 62 (2011) 639 (https://doi.org/10.1007/s12665-010-0553-z)
A. A. Radojevic, S. M. Serbula, T. S. Kalinovic, J. V. Kalinovic, M. M. Steharnik, J. V. Petrovic, J. S. Milosavljevic, Env. Sci. Poll. Res. 24 (2017) 10326 (https://doi.org/10.1007/s11356-017-8520-9)
P. J. C. Favas, J. Pratas, M. N. V. Prasad, Int. J. Env. Sci. Tech. 10 (2013) 809 (https://doi.org/10.1007/s13762-012-0115-x)
D. Yildirim, A. Sasmaz, J. Geochem. Expl. 182 (2017) 228 (https://doi.org/10.1016/j.gexplo.2016.11.005)
D. Marbaniang, S. S. Chaturve, Int. J. Sci. Res. Manag. (IJSRM), 2 (2014) 965 (https://ijsrm.net/index.php/ijsrm/article/view/668)
S. Shiyab, Agriculture 8 (2018) 29 (https://doi.org/10.3390/agriculture8020029)
Y. Mao, S. Sang, S. Liu, J. Jia, Comptes Rendus Biologies 337 (2014) 332 (https://doi.org/10.1016/j.crvi.2014.02.008)
USDA. Soil quality information sheet, Soil quality indicators: Organic matter. Washington D.C.: United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) (1996)
G. Du Laing, D. R. J. Vanthuyne, B. Vandecasteele, F. M. G. Tack, M. G. Verloo, Environ. Pollut. 147 (2007) 615 (https://doi.org/10.1016/j.envpol.2006.10.004)
F. R. Zeng, S. Ali, H. T. Zhang, Y. B. Ouyang, B. Y. Qiu, F. B. Wu, G. P. Zhang, Environ. Pollut. 159 (2011) 84 (https://doi.org/10.1016/j.envpol.2010.09.019)
S. Bravo, J. A. Amorós, C. Pérez-de-los-Reyes, F. J. García, M. M. Moreno, M. Sánchez-Ormeño, P. Higueras, J. Geochem. Expl. 174 (2017) 79 (https://doi.org/10.1016/j.gexplo.2015.12.012)
USDA, Soil Quality Indicators: pH. Soil quality information sheet. Natural resources conservation service, U.S. Department of agriculture, (1998)
Uredba br. 30/2018-50; UREDBU o graničnim vrednostima zagađujućih, štetnih i opasnih materija u zemljištu 30/2018-50. „Službeni glasnik Republike Srbije” (2018)
A. Kabata-Pendias Trace elements in soils and plants (4th ed.) CRC Press, Boca Raton, Florida, (2010) (https://doi.org/10.1201/b10158)
A.Kabata-Pendias, H. Pendias, Trace Elements in Soil and Plants (3rd ed.), Boca Raton: CRC Press, (2000) (https://doi.org/10.1201/9781420039900)
WHO. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Geneva: World Health Organization (2007)
M. Pająk, W. Halecki, M. Gąsiorek, Chemosphere 168 (2017) 851 (https://doi.org/10.1016/j.chemosphere.2016.10.125).