Selected phytochemicals as potent acetylcholinesterase inhibitors: An in silico prediction

Main Article Content

Ram Lal Swagat Shrestha
https://orcid.org/0000-0002-7939-2830
Prabhat Neupane
https://orcid.org/0009-0001-8256-7072
Sujan Dhital
https://orcid.org/0009-0000-2384-1687
Nirmal Parajuli
https://orcid.org/0009-0008-7068-6374
Binita Maharjan
https://orcid.org/0009-0002-5606-3257
Timila Shrestha
https://orcid.org/0009-0008-2686-6378
Samjhana Bharati
https://orcid.org/0009-0002-4301-7251
Bishnu Prasad Marasini
https://orcid.org/0000-0001-6153-5234
Jhashanath Adhikari Subin
https://orcid.org/0000-0001-8515-9843

Abstract

In recent times, there has been a notable increase in the prevalence of Alzheimer’s disease. The disease could be managed through the inhibition of acetylcholinesterase, an enzyme associated with the degradation of acetylcholine. Plants have been used to treat neurogenerative diseases and their phytochemicals could act as acetylcholinesterase inhibitors, impeding the protein’s catalytic activity. This study includes a computational assessment of phytocompounds as potent inhibitors of the enzyme. The molecular docking calculations revealed binding affinities of -50.651 kJ/mol, -49.446 kJ/mol, -48.400 kJ/mol, -47.977 kJ/mol, -47.839 kJ/mol, and -47.417 kJ/mol for allanxanthone B, stigmasterol, 5'-O-methyl dioncophylline D, ismailin, wistin and dioncophylline C2, respectively indicating firm binding of these molecules with the receptor. Donepezil (a native and FDA-approved drug) exhibited a binding affinity of -46.789 kJ/mol, which was significantly lower than that of the proposed phytochemicals. The hit candidates demonstrated good stability of the complex with the protein, showing smooth RMSD of ligands below 6 Å from the 200 ns molecular dynamics simulation. The thermodynamic stability from the MMPBSA method indicated the sustained spontaneity and feasibility of the adducts. Thus, the proposed hit candidates could be used as remedies for Alzheimer’s disease after experimental verification for their safety and efficacy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
R. L. S. Shrestha, “Selected phytochemicals as potent acetylcholinesterase inhibitors: An in silico prediction”, J. Serb. Chem. Soc., Jul. 2024.
Section
Theoretical Chemistry

References

B. Ibach, E. Haen, H. E. Klein, Curr. Pharm. Des. 10 (2004) 231-251 (https://doi.org/10.2174/1381612043386509)

P. Scheltens, B. D. Strooper, M. Kivipelto, H. Holstege, G. Chételat, C. E. Teunissen, J. Cummings, W. M. van der Flier, Lancet 397 (2021) 1577–1590 (https://doi.org/10.1016/S0140-6736(20)32205-4)

World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/dementia, (3 March 2024).

V. N. Talesa, Mech. Ageing Dev. 122 (2001) 1961-1969 (https://doi.org/10.1016/S0047-6374(01)00309-8)

M. R. Picciotto, M. J. Higley, Y. S. Mineur, Neuron 76 (2012) 116–129 (https://doi.org/10.1016/j.neuron.2012.08.036)

M. Racchi, M. Mazzucchelli, E. Porrello, C. Lanni, S. Govoni, Pharmacol. Res. 50 (2004) 441–451 (https://doi.org/10.1016/j.phrs.2003.12.027)

D. A. Belinskaia, P. A. Voronina, D. V. Krivorotov, R. O. Jenkins, N. V. Goncharov, Pharmaceutics 15 (2023) 2159 (https://doi.org/10.3390/pharmaceutics15082159)

G. Johnson, S. W. Moore, Curr. Pharm. Des 12 (2006) 217-225 (https://doi.org/10.2174/138161206775193127)

T. Dubey, S. Chinnathambi, Arch. Biochem. Biophys. 676 (2019) 108153 (https://doi.org/10.1016/j.abb.2019.108153)

H. Khan, Marya, S. Amin, M. A. Kamal, S. Patel, Biomed. Pharmacother. 101 (2018) 860–870 (https://doi.org/10.1016/j.biopha.2018.03.007)

N. A. Masondo, G. I. Stafford, A. O. Aremu, N. P. Makunga, South African J. Bot. 120 (2019) 39–64 (https://doi.org/10.1016/j.sajb.2018.09.011)

C. L. Hung, C. C. Chen, Drug Dev. Res. 75 (2014) 412–418 (https://doi.org/10.1002/ddr.21222)

B. Sarkar, S. Alam, T. K. Rajib, S. S. Islam, Y. Araf, M. A. Ullah, Egypt. J. Med. Hum. Genet. 22 (2021) 10 (https://doi.org/10.1186/s43042-020-00127-8)

S. S. Ou-Yang, J. Y. Lu, X. Q. Kong, Z. J. Liang, C. Luo, H. Jiang, Acta Pharmacol. Sin. 33 (2012) 1131–1140 (https://doi.org/10.1038/aps.2012.109)

B. D. Bekono, F. Ntie-Kang, P. A. Onguéné, L. L. Lifongo, W. Sippl, K. Fester, L. C. O. Owono, Malar. J. 19 (2020) 183 (https://doi.org/10.1186/s12936-020-03231-7)

S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E. E. Bolton, Nucleic Acids Res. 51 (2023) D1373–D1380 (https://doi.org/10.1093/nar/gkac956)

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeerschd, E. Zurek, G. R. Hutchison, J. Cheminform. 4 (2012) 17 (https://doi.org/10.1186/1758-2946-4-17)

K. V. Dileep, K. Ihara, C. Mishima-Tsumagari, M. Kukimoto-Niino, M. Yonemochi, K. Hanada, M. Shirouzu, K. Y. J. Zhang, Int. J. Biol. Macromol. 210 (2022) 172–181 (https://doi.org/10.1016/j.ijbiomac.2022.05.009)

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 28 (2000) 235-242 (https://doi.org/10.1093/nar/28.1.235)

S. Yuan, H. C. S. Chan, Z. Hu, WIREs Comp. Mol. Sci. 7 (2017) e1298 (https://doi.org/10.1002/wcms.1298)

C. Colovos, T. O. Yeates, Protein Sci. 2 (1993) 1511–1519 (https://doi.org/10.1002/pro.5560020916)

K. B. Santos, I. A. Guedes, A. L. M. Karl, L. E. Dardenne, J. Chem. Inf. Model. 60 (2020) 667–683 (https://doi.org/10.1021/acs.jcim.9b00905)

R. L. S. Shrestha, B. Maharjan, T. Shrestha, B. P. Marasini, J. Adhikari Subin, Results Chem. 7 (2024) 101363 (https://doi.org/10.1016/j.rechem.2024.101363)

U. Baroroh, M. Biotek, Z. S. Muscifa, W. Destiarani, F. G. Rohmatullah, M. Yusuf, Indones. J. Comput. Biol. 2 (2023) 22 (https://doi.org/10.24198/ijcb.v2i1.46322)

M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindah, SoftwareX 1 (2015) 19–25 (https://doi.org/10.1016/j.softx.2015.06.001)

V. Zoete, M. A. Cuendet, A. Grosdidier, O. Michielin, J. Comput. Chem. 32 (2011) 2359–2368 (https://doi.org/10.1002/jcc.21816)

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 79 (1983) 926–935 (https://doi.org/10.1063/1.445869)

P. Neupane, J. Adhikari Subin, R. Adhikari, J. Biomol. Struct. Dyn. (2024) 1–16 (https://doi.org/10.1080/07391102.2024.2314262)

M. S. Valdés-Tresanco, M. E. Valdés-Tresanco, P. A. Valiente, E. Moreno, J. Chem. Theory Comput. 17 (2021) 6281–6291 (https://doi.org/10.1021/acs.jctc.1c00645)

D. E. Pires, T. L. Blundell, D. B. Ascher, J. Med. Chem. 58 (2015) 4066-4072 (https://doi.org/10.1021/acs.jmedchem.5b00104)

R. L. S. Shrestha, R. Panta, B. Maharjan, T. Shrestha, S. Bharati, S. Dhital, P. Neupane, N. Parajuli, B. P. Marasini, J. Adhikari Subin, Mor. J. Chem 12 (2024) 776–798 (https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i2.46845)

P. Neupane, S. Dhital, N. Parajuli, T. Shrestha, S. Bharati, B. Maharjan, J. Adhikari Subin, R. L. S. Shrestha, J. Nepal Phys. Soc. 9 (2023) 95–105 (https://doi.org/10.3126/jnphyssoc.v9i2.62410)

E. Y. Shintani, K. M. Uchida, Am. J. Health-Syst. Pharm. 54 (1997) 2805-2810 (https://doi.org/10.1093/ajhp/54.24.2805)

Q. M. S. Jamal, M. I. Khan, A. H. Alharbi, V. Ahmad, B. S. Yadav, Nutrients 15 (2023) 1579 (https://doi.org/10.3390/nu15071579)

T. R. Lamichhane, M. P. Ghimire, Heliyon 7 (2021) E08220 (https://doi.org/10.1016/j.heliyon.2021.e08220)

B. K. Raut, S. R. Upadhyaya, J. Bashyal, N. Parajuli, ACS Omega 8 (2023) 43617–43631 (https://doi.org/10.1021/acsomega.3c05082)

E. Durham, B. Dorr, N. Woetzel, R. Staritzbichler, J. Meiler, J. Mol. Model. 15 (2009) 1093–1108 (https://doi.org/10.1007/s00894-009-0454-9)

M. Y. Lobanov, N. S. Bogatyreva, O. V. Galzitskaya, Mol. Biol. 42 (2008) 623–628 (https://doi.org/10.1134/S0026893308040195)

A. Shrestha, S. R. Upadhyaya, B. K. Raut, S. Bhattarai, K. R. Sharma, N. Parajuli, J. K. Sohng, & B. P. Regmi, Processes 12 (2024) 230 (https://doi.org/10.3390/pr12010230)

Z. Cournia, B. Allen, W. Sherman, J. Chem. Inf. Model. 57 (2017) 2911–2937 (https://doi.org/10.1021/acs.jcim.7b00564).