Selected phytochemicals as potent acetylcholinesterase inhibitors: An in silico prediction
Main Article Content
Abstract
In recent times, there has been a notable increase in the prevalence of Alzheimer’s disease. The disease could be managed through the inhibition of acetylcholinesterase, an enzyme associated with the degradation of acetylcholine. Plants have been used to treat neurogenerative diseases and their phytochemicals could act as acetylcholinesterase inhibitors, impeding the protein’s catalytic activity. This study includes a computational assessment of phytocompounds as potent inhibitors of the enzyme. The molecular docking calculations revealed binding affinities of -50.651 kJ/mol, -49.446 kJ/mol, -48.400 kJ/mol, -47.977 kJ/mol, -47.839 kJ/mol, and -47.417 kJ/mol for allanxanthone B, stigmasterol, 5'-O-methyl dioncophylline D, ismailin, wistin and dioncophylline C2, respectively indicating firm binding of these molecules with the receptor. Donepezil (a native and FDA-approved drug) exhibited a binding affinity of -46.789 kJ/mol, which was significantly lower than that of the proposed phytochemicals. The hit candidates demonstrated good stability of the complex with the protein, showing smooth RMSD of ligands below 6 Å from the 200 ns molecular dynamics simulation. The thermodynamic stability from the MMPBSA method indicated the sustained spontaneity and feasibility of the adducts. Thus, the proposed hit candidates could be used as remedies for Alzheimer’s disease after experimental verification for their safety and efficacy.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
B. Ibach, E. Haen, H. E. Klein, Curr. Pharm. Des. 10 (2004) 231-251 (https://doi.org/10.2174/1381612043386509)
P. Scheltens, B. D. Strooper, M. Kivipelto, H. Holstege, G. Chételat, C. E. Teunissen, J. Cummings, W. M. van der Flier, Lancet 397 (2021) 1577–1590 (https://doi.org/10.1016/S0140-6736(20)32205-4)
World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/dementia, (3 March 2024).
V. N. Talesa, Mech. Ageing Dev. 122 (2001) 1961-1969 (https://doi.org/10.1016/S0047-6374(01)00309-8)
M. R. Picciotto, M. J. Higley, Y. S. Mineur, Neuron 76 (2012) 116–129 (https://doi.org/10.1016/j.neuron.2012.08.036)
M. Racchi, M. Mazzucchelli, E. Porrello, C. Lanni, S. Govoni, Pharmacol. Res. 50 (2004) 441–451 (https://doi.org/10.1016/j.phrs.2003.12.027)
D. A. Belinskaia, P. A. Voronina, D. V. Krivorotov, R. O. Jenkins, N. V. Goncharov, Pharmaceutics 15 (2023) 2159 (https://doi.org/10.3390/pharmaceutics15082159)
G. Johnson, S. W. Moore, Curr. Pharm. Des 12 (2006) 217-225 (https://doi.org/10.2174/138161206775193127)
T. Dubey, S. Chinnathambi, Arch. Biochem. Biophys. 676 (2019) 108153 (https://doi.org/10.1016/j.abb.2019.108153)
H. Khan, Marya, S. Amin, M. A. Kamal, S. Patel, Biomed. Pharmacother. 101 (2018) 860–870 (https://doi.org/10.1016/j.biopha.2018.03.007)
N. A. Masondo, G. I. Stafford, A. O. Aremu, N. P. Makunga, South African J. Bot. 120 (2019) 39–64 (https://doi.org/10.1016/j.sajb.2018.09.011)
C. L. Hung, C. C. Chen, Drug Dev. Res. 75 (2014) 412–418 (https://doi.org/10.1002/ddr.21222)
B. Sarkar, S. Alam, T. K. Rajib, S. S. Islam, Y. Araf, M. A. Ullah, Egypt. J. Med. Hum. Genet. 22 (2021) 10 (https://doi.org/10.1186/s43042-020-00127-8)
S. S. Ou-Yang, J. Y. Lu, X. Q. Kong, Z. J. Liang, C. Luo, H. Jiang, Acta Pharmacol. Sin. 33 (2012) 1131–1140 (https://doi.org/10.1038/aps.2012.109)
B. D. Bekono, F. Ntie-Kang, P. A. Onguéné, L. L. Lifongo, W. Sippl, K. Fester, L. C. O. Owono, Malar. J. 19 (2020) 183 (https://doi.org/10.1186/s12936-020-03231-7)
S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E. E. Bolton, Nucleic Acids Res. 51 (2023) D1373–D1380 (https://doi.org/10.1093/nar/gkac956)
M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeerschd, E. Zurek, G. R. Hutchison, J. Cheminform. 4 (2012) 17 (https://doi.org/10.1186/1758-2946-4-17)
K. V. Dileep, K. Ihara, C. Mishima-Tsumagari, M. Kukimoto-Niino, M. Yonemochi, K. Hanada, M. Shirouzu, K. Y. J. Zhang, Int. J. Biol. Macromol. 210 (2022) 172–181 (https://doi.org/10.1016/j.ijbiomac.2022.05.009)
H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 28 (2000) 235-242 (https://doi.org/10.1093/nar/28.1.235)
S. Yuan, H. C. S. Chan, Z. Hu, WIREs Comp. Mol. Sci. 7 (2017) e1298 (https://doi.org/10.1002/wcms.1298)
C. Colovos, T. O. Yeates, Protein Sci. 2 (1993) 1511–1519 (https://doi.org/10.1002/pro.5560020916)
K. B. Santos, I. A. Guedes, A. L. M. Karl, L. E. Dardenne, J. Chem. Inf. Model. 60 (2020) 667–683 (https://doi.org/10.1021/acs.jcim.9b00905)
R. L. S. Shrestha, B. Maharjan, T. Shrestha, B. P. Marasini, J. Adhikari Subin, Results Chem. 7 (2024) 101363 (https://doi.org/10.1016/j.rechem.2024.101363)
U. Baroroh, M. Biotek, Z. S. Muscifa, W. Destiarani, F. G. Rohmatullah, M. Yusuf, Indones. J. Comput. Biol. 2 (2023) 22 (https://doi.org/10.24198/ijcb.v2i1.46322)
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindah, SoftwareX 1 (2015) 19–25 (https://doi.org/10.1016/j.softx.2015.06.001)
V. Zoete, M. A. Cuendet, A. Grosdidier, O. Michielin, J. Comput. Chem. 32 (2011) 2359–2368 (https://doi.org/10.1002/jcc.21816)
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 79 (1983) 926–935 (https://doi.org/10.1063/1.445869)
P. Neupane, J. Adhikari Subin, R. Adhikari, J. Biomol. Struct. Dyn. (2024) 1–16 (https://doi.org/10.1080/07391102.2024.2314262)
M. S. Valdés-Tresanco, M. E. Valdés-Tresanco, P. A. Valiente, E. Moreno, J. Chem. Theory Comput. 17 (2021) 6281–6291 (https://doi.org/10.1021/acs.jctc.1c00645)
D. E. Pires, T. L. Blundell, D. B. Ascher, J. Med. Chem. 58 (2015) 4066-4072 (https://doi.org/10.1021/acs.jmedchem.5b00104)
R. L. S. Shrestha, R. Panta, B. Maharjan, T. Shrestha, S. Bharati, S. Dhital, P. Neupane, N. Parajuli, B. P. Marasini, J. Adhikari Subin, Mor. J. Chem 12 (2024) 776–798 (https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i2.46845)
P. Neupane, S. Dhital, N. Parajuli, T. Shrestha, S. Bharati, B. Maharjan, J. Adhikari Subin, R. L. S. Shrestha, J. Nepal Phys. Soc. 9 (2023) 95–105 (https://doi.org/10.3126/jnphyssoc.v9i2.62410)
E. Y. Shintani, K. M. Uchida, Am. J. Health-Syst. Pharm. 54 (1997) 2805-2810 (https://doi.org/10.1093/ajhp/54.24.2805)
Q. M. S. Jamal, M. I. Khan, A. H. Alharbi, V. Ahmad, B. S. Yadav, Nutrients 15 (2023) 1579 (https://doi.org/10.3390/nu15071579)
T. R. Lamichhane, M. P. Ghimire, Heliyon 7 (2021) E08220 (https://doi.org/10.1016/j.heliyon.2021.e08220)
B. K. Raut, S. R. Upadhyaya, J. Bashyal, N. Parajuli, ACS Omega 8 (2023) 43617–43631 (https://doi.org/10.1021/acsomega.3c05082)
E. Durham, B. Dorr, N. Woetzel, R. Staritzbichler, J. Meiler, J. Mol. Model. 15 (2009) 1093–1108 (https://doi.org/10.1007/s00894-009-0454-9)
M. Y. Lobanov, N. S. Bogatyreva, O. V. Galzitskaya, Mol. Biol. 42 (2008) 623–628 (https://doi.org/10.1134/S0026893308040195)
A. Shrestha, S. R. Upadhyaya, B. K. Raut, S. Bhattarai, K. R. Sharma, N. Parajuli, J. K. Sohng, & B. P. Regmi, Processes 12 (2024) 230 (https://doi.org/10.3390/pr12010230)
Z. Cournia, B. Allen, W. Sherman, J. Chem. Inf. Model. 57 (2017) 2911–2937 (https://doi.org/10.1021/acs.jcim.7b00564).