The Microplastic accumulation and reduction in shellfish (Polymesoda bengalensis) using NaCl solution

Main Article Content

Deswati Deswati
https://orcid.org/0000-0003-2959-4861
Emriadi Emriadi
https://orcid.org/0000-0001-9915-1930
Selfi Monica Aura
https://orcid.org/0009-0006-7389-4721
Wiya Elsa Fitri
https://orcid.org/0009-0006-6376-2768
Suparno Suparno
https://orcid.org/0000-0001-8462-3739
Adewirli Putra
https://orcid.org/0000-0001-6500-6241

Abstract

This study investigates microplastic (MP) contamination in shellfish (Polymesoda bengalensis) and evaluates the effectiveness of NaCl treatment in reducing MP levels in consumed shellfish. Samples were collected from three estuaries in West Sumatra, Indonesia: Batang Arau, Bungo Pasang, and North Punggasan. The samples were analyzed using trinocular microscopy and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) to quantify MP abundance and identify polymer types. MP concentrations ranged between 750-1000 particles kg-1 in shellfish and 400-500 particles kg-1 in sediments, with Batang Arau exhibiting the highest levels. The predominant MP forms detected were fragments (82.36%), films (13.72%), and fibers (3.92%), with sizes primarily between 100-300 µm. The primary polymers identified included polyvinyl chloride (PVC), polyamide (PA), and polyethylene terephthalate (PET). A series of treatments using NaCl solutions at varying concentrations (10%, 20%, 30%) and immersion durations (10, 20, 30 minutes) demonstrated that a 30% NaCl solution for 30 minutes effectively reduced MP levels by 85%, decreasing MP concentration in shellfish flesh to 150 particles kg-1. These findings highlight the potential of NaCl treatment as a cost-effective method for reducing MP contamination in shellfish, contributing to improved seafood safety and providing insights into MP pollution management in aquatic ecosystems.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
D. Deswati, E. Emriadi, S. . Monica Aura, W. E. Fitri, S. Suparno, and A. Putra, “The Microplastic accumulation and reduction in shellfish (Polymesoda bengalensis) using NaCl solution”, J. Serb. Chem. Soc., Jun. 2025.
Section
Environmental Chemistry

References

A. Nugraha, S. H. Sutjahjo, & A. A. Amin, J. Nat. Resour. Environ. Manag. 8 (2018) 7–14

(https://doi.org/10.29244/jpsl.8.1.7-14)

C. B. Crawford, & B. Quinn, Plastic production, waste and legislation. in Microplastic Pollut., Elsevier,

, pp. 39–56 (https://doi.org/10.1016/b978-0-12-809406-8.00003-7)

M. Lončarski, A. Tubić, M. K. Isakovski, B. Jović, T. Apostolović, J. Nikić, & J. Agbaba, J. Serbian Chem.

Soc. 85 (2020) 697–709 (https://doi.org/10.2298/JSC190712124L)

L. Lin, L. Z. Zuo, J. P. Peng, L. Q. Cai, L. Fok, Y. Yan, H. X. Li, & X. R. Xu, Sci. Total Environ. 644 (2018)

–381 (https://doi.org/10.1016/j.scitotenv.2018.06.327)

A. A. Koelmans, N. H. Mohamed Nor, E. Hermsen, M. Kooi, S. M. Mintenig, & J. De France, Water Res.

(2019) 410–422 (https://doi.org/10.1016/j.watres.2019.02.054)

A. Al Mamun, T. A. E. Prasetya, I. R. Dewi, & M. Ahmad, Sci. Total Environ. 858 (2023) 159834

(https://doi.org/10.1016/j.scitotenv.2022.159834)

E. Mollova, E. Ivanova, S. Turmanova, & A. Dimitrov, J. Serbian Chem. Soc. (2023) 1–43

(https://doi.org/10.2298/JSC230516073M)

J. Ding, J. Li, C. Sun, F. Jiang, C. He, M. Zhang, P. Ju, & N. X. Ding, Sci. Total Environ. 739 (2020)

(https://doi.org/10.1016/j.scitotenv.2020.139887)

L. I. Bendell, E. LeCadre, & W. Zhou, PLoS One 15 (2020)

(https://doi.org/10.1371/journal.pone.0232879)

A. F. Pérez, M. Ojeda, G. N. Rimondino, I. L. Chiesa, R. Di Mauro, C. C. Boy, & J. A. Calcagno, Mar.

Pollut. Bull. 161 (2020) (https://doi.org/10.1016/j.marpolbul.2020.111753)

J. Li, C. Green, A. Reynolds, & H. Shi, Environ. Pollut. 44 (2018) 1–41

(https://doi.org/10.1016/j.envpol.2018.05.038)

X. Qu, L. Su, H. Li, M. Liang, & H. Shi, Sci. Total Environ. 621 (2018) 679–686

(https://doi.org/10.1016/j.scitotenv.2017.11.284)

J. Ding, C. Sun, C. He, J. Li, P. Ju, & F. Li, Sci. Total Environ. 782 (2021)

(https://doi.org/10.1016/j.scitotenv.2021.146830)

S. Uddin, S. W. Fowler, T. Saeed, A. Naji, & N. Al-Jandal, Mar. Pollut. Bull. 158 (2020)

(https://doi.org/10.1016/j.marpolbul.2020.111374)

M. S. Arifin, J. Suprijanto, & A. Ridlo, J. Mar. Res. 12 (2023) 447–454

(https://doi.org/10.14710/jmr.v12i3.36448)

S. M. Brander, V. C. Renick, M. M. Foley, C. Steele, M. Woo, A. Lusher, S. Carr, P. Helm, C. Box, S.

Cherniak, R. C. Andrews, & C. M. Rochman, Appl. Spectrosc. 74 (2020) 1099–1125

(https://doi.org/10.1177/0003702820945713)

Indonesia Geospasial, Region of West Sumatra, Indonesia, Indonesia Geospasial: Sistem Informasi

Geografi & Penginderaan Jauh, https://www.indonesia-geospasial.com/ (accessed: April 23, 2023)

A. Mathalon, & P. Hill, Mar. Pollut. Bull. 81 (2014) 69–79

(https://doi.org/10.1016/j.marpolbul.2014.02.018)

D. Deswati, B. Kurnia Hamzani, Y. Yusuf, W. E. Fitri, & A. Putra, Int. J. Environ. Anal. Chem. (2023) 1–

(https://doi.org/10.1080/03067319.2023.2268523)

D. Deswati, O. N. Tetra, M. Hayati, A. Putra, W. E. Fitri, S. Suparno, & H. Pardi, AACL Bioflux 16 (2023)

–2614

D. Deswati, O. N. Tetra, U. Febriani, S. Suparno, H. Pardi, & A. Putra, AACL Bioflux 16 (2023) 2765–

S. Suparno, D. Deswati, W. E. Fitri, H. Pardi, & A. Putra, Environ. Nat. Resour. J. 22 (2024) 55–64

(https://doi.org/10.32526/ennrj/22/20230191)

E. Hengstmann, M. Tamminga, C. vom Bruch, & E. K. Fischer, Mar. Pollut. Bull. 126 (2018) 263–274

(https://doi.org/10.1016/j.marpolbul.2017.11.010)

D. A. Syamsu, D. Deswati, S. Syafrizayanti, A. Putra, & Y. Suteja, Glob. J. Environ. Sci. Manag. 10

(2024) 205–224 (https://doi.org/10.22034/gjesm.2024.01.14)

J. Masura, J. Baker, G. Foster, & C. Arthur, Laboratory Methods for the Analysis of Microplastics in

the Marine Environment: Recommendations for quantifying synthetic particles in waters and

sediments, 2015

F. A. Febria, A. Syafrita, A. Putra, H. Hidayat, & C. Febrion, Glob. J. Environ. Sci. Manag. 10 (2024) 805–

(https://doi.org/10.22035/gjesm.2024.02.24)

D. Deswati, N. D. Wisna, R. Zein, O. N. Tetra, S. Suparno, H. Pardi, & Y. Suteja, AACL Bioflux 16 (2023)

–397

D. Deswati, R. Zein, I. P. Bunda, A. Putra, & S. Suparno, Pollution 10 (2024) 90–103

(https://doi.org/10.22059/poll.2023.361556.1973)

G. Filippini, K. A. Dafforn, & A. B. Bugnot, Environ. Pollut. 316 (2023) 120614

(https://doi.org/10.1016/j.envpol.2022.120614)

GESAMP, Guidelines for the monitoring and assessment of plastic litter in the ocean, 2019

G. Vandermeersch, L. Van Cauwenberghe, C. R. Janssen, A. Marques, K. Granby, G. Fait, M. J. J.

Kotterman, J. Diogène, K. Bekaert, J. Robbens, & L. Devriese, Environ. Res. 143 (2015) 46–55

(https://doi.org/10.1016/j.envres.2015.07.016)

W. C. Ayuningtyas, D. Yona, S. H. J. S, & F. Iranawati, J. Fish. Mar. Res. 3 (2019) 41–45

(https://doi.org/10.21776/ub.jfmr.2019.003.01.5)

J. P. G. L. Frias, & R. Nash, Mar. Pollut. Bull. 138 (2019) 145–147

(https://doi.org/10.1016/j.marpolbul.2018.11.022)

M. González-Hernández, C. Hernández-Sánchez, J. González-Sálamo, J. López-Darias, & J.

Hernández-Borges, Mar. Pollut. Bull. 150 (2020) 110757

(https://doi.org/10.1016/j.marpolbul.2019.110757)

R. Leiser, G. M. Wu, T. R. Neu, & K. Wendt-Potthoff, Water Res. 176 (2020) 115748

(https://doi.org/10.1016/j.watres.2020.115748)

C. Li, R. Busquets, & L. C. Campos, Sci. Total Environ. 707 (2020) 135578

(https://doi.org/10.1016/j.scitotenv.2019.135578)

Q. Li, C. Ma, Q. Zhang, & H. Shi, Curr. Opin. Food Sci. 40 (2021) 192–197

(https://doi.org/10.1016/j.cofs.2021.04.017)

L. Van Cauwenberghe, L. Devriese, F. Galgani, J. Robbens, & C. R. Janssen, Mar. Environ. Res. 111

(2015) 5–17 (https://doi.org/10.1016/j.marenvres.2015.06.007)

Y. Liu, Y. Lin, J. Xie, P. Li, Y. Zhou, P. Wang, & Y. Wu, Bull. Environ. Contam. Toxicol. 110 (2023) 96

(https://doi.org/10.1007/s00128-023-03726-4)

T. T. T. Vu, D. T. Nguyen, N. T. M. Nguyen, & M. N. Nguyen, Mar. Pollut. Bull. 185 (2022) 114317

(https://doi.org/10.1016/J.MARPOLBUL.2022.114317)

A. M. Abdelghany, M. S. Meikhail, & N. Asker, Integr. Med. Res. 8 (2019) 3908–3916

(https://doi.org/10.1016/j.jmrt.2019.06.053)

W. Fu, J. Min, W. Jiang, Y. Li, & W. Zhang, Sci. Total Environ. 721 (2020) 137561

(https://doi.org/10.1016/j.scitotenv.2020.137561)

X. Yan, Z. Cao, A. Murphy, & Y. Qiao, J. Environ. Chem. Eng. 10 (2022)

(https://doi.org/10.1016/j.jece.2022.108130)

M. Munoz, D. Ortiz, J. Nieto-Sandoval, Z. M. de Pedro, & J. A. Casas, Chemosphere 283 (2021) 131085

(https://doi.org/10.1016/j.chemosphere.2021.131085)

F. fei Liu, G. zhou Liu, Z. lin Zhu, S. chun Wang, & F. fei Zhao, Chemosphere 214 (2019) 688–694

(https://doi.org/10.1016/j.chemosphere.2018.09.174)

S. H. Joo, Y. Liang, M. Kim, J. Byun, & H. Choi, Environ. Challenges 3 (2021) 100042

(https://doi.org/10.1016/j.envc.2021.100042)

C. Mejías, J. Martín, J. L. Santos, I. Aparicio, & E. Alonso, Environ. Technol. Innov. 32 (2023) 103276

(https://doi.org/10.1016/j.eti.2023.103276)

W. Li, B. Zu, Q. Yang, J. Guo, & J. Li, RSC Adv. 13 (2023) 15566–15574

(https://doi.org/10.1039/d3ra02169f)