Enhancing fire resistance in wood with high-water retention silica gel: A promising flame-retardant solution
Main Article Content
Abstract
This study aims to evaluate the water retention and flame-retardant properties of silica gel prepared using anionic polyacrylamide (HPAM), gluconate-delta-lactone (GDL), and aluminum citrate (AlCit). Silica gel samples were synthesized with sodium silicate (8 wt%), sodium bicarbonate (4 wt%) and varying concentrations of HPAM (0.2-0.8 wt%) and GDL (0.1-0.3 wt%). The prepared gels were characterized using XPS, XRD, FTIR, and TGA. Optimal water retention capacity was achieved with 0.4 wt% HPAM and 0.2 wt% GDL. Compared to traditional gels, silica gel has more surface water molecules due to additional hydrophilic groups and the amorphous nature of silica. At high temperatures, silica forms a layer with the charcoal from treated wood combustion, inhibiting oxygen penetration and minimizing further combustion. After combustion at 500°C, the mass loss of wood treated with silica gel is 36–53% less than untreated wood, indicating greater weight retention and demonstrating silica gel's effectiveness in preventing continued burning.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
T. Farid, M. I. Rafiq, A. Ali, W. Tang, EcoMat 4 (2022) e12154 (https://doi.org/10.1002/eom2.12154)
S. He, W. Wu, M. Zhang, H. Qu, J. Xu, J. Therm. Anal. Calorim. 128 (2017) 825 (https://doi.org/10.1007/s10973-016-5947-z)
E. Baysal, M. K. Yalinkilic, M. Altinok, A. Sonmez, H. Peker, M. Colak, Constr. Build. Mater. 21 (2007) 1879 (https://doi.org/10.1016/j.conbuildmat.2006.05.026)
I. Ratajczak, B. Mazela, Holz Als Roh-und Werkst. 65 (2007) 231 (https://doi.org/10.1007/s00107-006-0154-4)
Q. Fu, D. S. Argyropoulos, D. C. Tilotta, L. A. Lucia, J. Anal. Appl. Pyrolysis 81 (2008) 60 (https://doi.org/10.1016/j.jaap.2007.08.003)
H. Yamaguchi, Wood Sci. Technol. 36 (2002) 399 (https://doi.org/10.1007/s00226-002-0149-1)
A. M. Pereyra, C. A. Giudice, Fire Saf. J. 44 (2009) 497 (https://doi.org/10.1016/j.firesaf.2008.10.004)
G. Canosa, P. V. Alfieri, C. A. Giudice, J. Fire Sci. 29 (2011) 431 (https://doi.org/10.1177/0734904111404652)
S. Nami Kartal, W. J. Hwang, A. Yamamoto, M. Tanaka, K. Matsumura, Y. Imamura, Int. Biodeterior. Biodegrad. 60 (2007) 189 (https://doi.org/10.1016/j.ibiod.2007.03.002)
S. Hribernik, M. S. Smole, K. S. Kleinschek, M. Bele, J. Jamnik, M. Gaberscek, Polym. Degrad. Stabil. 92 (2007) 1957 (https://doi.org/10.1016/j.polymdegradstab.2007.08.010)
S. G. Hu, S. Xue, J. Coal Sci. Eng. China 17 (2011) 256 (https://doi.org/10.1007/s12404-011-0306-y)
M. Wu, Y. Liang, Y. Zhao, W. Wang, X. Hu, F. Tian, Z. He, Y. Li, T. Liu, Colloid Surf. A-Physicochem. Eng. Asp. 629 (2021) 127443 (https://doi.org/10.1016/j.colsurfa.2021.127443)
Y. Fan, Y. Zhao, X. Hu, M. Wu, D. Xue, Fuel 263 (2020) 116693 (https://doi.org/10.1016/j.fuel.2019.116693)
S. Hu, S. Xue, J. Coal. Sci. Eng. China 17 (2011) 256 (https://doi.org/10.1007/s12404-011-0306-y)
B. Qin, G. Dou, Y. W, H. Wang, L. Ma, D. Wang, Fuel 190 (2017) 129-135 (https://doi.org/10.1016/j.fuel.2016.11.045)
P. Qian, Z. Qin, H. Guo, C. Geng, N. Yan, X. Cui, Ind. Saf. Environ. Prot. 38 (2012) 13 (https://caod.oriprobe.com/articles/30918095/Sodium_Silicate_polyelectrolyte_Composite_Gel_Mate.htm)
X. Ren, X. Hu, D. Xue, Y. Li, Z. Shao, H. Dong, W. Cheng, Y. Zhao, L. Xin, W. Lu, J. Hazard. Mater. 371 (2019) 643 (https://doi.org/10.1016/j.jhazmat.2019.03.041)
K. Wang, W. Lu, Y. Du, Q. Zhang, J. Xu, Min. Saf. Environ. Prot. 43 (2016) 8 (http://www.cnki.net/kcms/detail/50.1062.TD.20160202.1908.006.html)
D. Xue, X. Hu, W. Cheng, J. Wei, Y. Zhao, L. Shen, Fuel 264 (2020) 116903 (https://doi.org/10.1016/j.fuel.2019.116903)
D. S. Kuprin, J. Sol-Gel Sci. Technol. 81 (2017) 36 (https://doi.org/10.1007/s10971-016-4285-8)
A. V. Vinogradov, D. S. Kuprin, I. M. Abduragimov, G. N. Kuprin, E. Serebriyakov, V. V. Vinogradov, ACS Appl. Mater. Interfaces 8 (2016) 294 (https://doi.org/10.1021/acsami.5b08653)
X. Zhu, Y. Wu, C. Tian, Y. Qing, C. Yao, J. Nanomater. 2014 (2014) 1 (https://doi.org/10.1155/2014/867106)
Y. Zhang, M. Jing, M. Zhang, S. Hou, B. Zhang, Fire Technol. 58 (2022) 3597 (https://doi.org/10.1007/s10694-022-01334-y)
Y. Liu, M. Wang, S. Zhao, Y. Liu, J. Yang, J. Shandong Univ. Sci. Technol.(Nat. Sci.) 37 (2018) 26 (https://kns.cnki.net/kcms/detail/37.1357.N.20180509.1327.012.html)
W. Xia, J. Yang, C. Liang, Appl. Surf. Sci. 293 (2014) 293 (https://doi.org/10.1016/j.apsusc.2013.12.151)
M. A. Abou Rida, F. Harb, J. Met. Mater. Miner. 24 (2014) 37 (https://www.jmmm.material.chula.ac.th/index.php/jmmm/article/view/108)
S. He, Y. Huang, G. Chen, M. Feng, H. Dai, B. Yuan, X. Chen, J. Hazard. Mater. 362 (2019) 294 (https://doi.org/10.1016/j.jhazmat.2018.08.087)
R. L. DeRosa, P. A. Schader, J. E. Shelby, J. Non-Cryst. Solids 331 (2003) 32 (https://doi.org/10.1016/j.jnoncrysol.2003.08.078)
X. Chen, G. Zhu, J. Wang, Q. Chen, Bull. Chin. Ceram. Soc. 36 (2017) 4044 (http://gsytb.jtxb.cn/EN/Y2017/V36/I12/4044)
D. C. O. Marney, L. J. Russell, R. Mann, Fire Mater. 32 (2008) 357 (https://doi.org/10.1002/fam.973)
Y. Zhang, M. Jing, M. Zhang, S. Hou, Y. Gong, J. Jiang, B. Zhang, Silicon 14 (2022) 12633 (https://doi.org/10.1007/s12633-022-01975-2)
Y. Yang, CN 107805447 A (2017)
M. Uddin, K. Kiviranta, S. Suvanto, L. Alvila, J. Leskinen, R. Lappalainen, A. Haapala, Fire Saf. J. 112 (2020) 102943 (https://doi.org/10.1016/j.firesaf.2019.102943)
R. M. Rowell, The chemistry of solid wood., American Chemical Society, Washington, DC, USA, 1984, pp. 531-574 (https://doi.org/10.1021/ba-1984-0207)
H. Miyafuji, S. Saka, J. Wood Sci. 47 (2001) 483 (https://doi.org/10.1007/BF00767902)
D. H. Blount, US 4380592 A (1983).