Corrosion studies, parameter effects, and surface morphology of AA5052-AA6101T6 friction stir welded joints
Main Article Content
Abstract
Traditional fusion welding is unsuitable for welding aluminum alloys because secondary brittle phases, porosity, and cracks are likely to form as the alloy solidifies. Friction stir welding (FRSTW), a new solid-state welding method, can join similar or dissimilar aluminium (ALU) alloys. In this study Friction stir welded AA5052-AA6101T6 alloy samples were tested for corrosion characteristics. The microstructure and mechanical behavior of FRSW-welded AA5052-AA6101T6 ALU alloy joints were examined relative to input parameters. Microstructure reveals that welding speed and rotation-speed affect the weld microstructure analyzed sample welded areas. Twenty-nine samples were corrosion tested in 3.5% NaCl, household water (880 ppm - SPM), 1N H2SO4, 1N NaOH, and natural seawater for 72 hours. Domestic salt water and acid medium showed better resistance to corrosion than alkaline and salt media. Impedance studies demonstrated slight anodic and cathodic potential changes after friction stir welding.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
Y. Chen, H. Wang, H. Li, X. Wang, H. Ding, J. Zhao, F. Zhang, Metals 9 (2019) 718 (https://doi.org/10.3390/met9070718)
R. Alfattani, M. Yunus, A. F. Mohamed, T. Alamro, M. K. Hassan, Materials 15 (2022) 260 (https://doi.org/10.3390/ma15010260)
R. S. Mishra, Z. Y. Ma, Mater. Sci. Eng. R. 50 (2005) 1 (https://doi.org/10.1016/j.mser.2005.07.001)
R. Sathish, A. Sathish Kumar, R. Ashok Kumar, Bull. Chem. Soc. Ethiop. 38 (2024) 811 https://dx.doi.org/10.4314/bcse.v38i3.20)
J. K. Paik, Int. J. Nav. Archit. Ocean. Eng. 1 (2009) 39 (https://doi.org/10.2478/IJNAOE-2013-0005)
E. T. Akinlabi, A. Andrews, S. A. Akinlabi, Trans. Nonferrous Met. Soc. China. 24 (2014) 1323 (https://doi.org/10.1016/S1003-6326(14)63195-2)
P. V. Kumar, G. M. Reddy, K. S. Rao, Def. Technol. 11 (2015) 362 (https://doi.org/10.1016/j.dt.2015.04.003)
V. N. Nguyen, Q. M. Nguyen, H. T. D. Thi, S. C. Huang, Sādhanā 43 (2018) 160 (https://doi.org/10.1007/s12046-018-0930-y)
R. Pruthviraj, M. Rashmi, J. Mater. Sci. Eng. 5 (2016) 1000221 (https://doi.org/10.4172/2169-0022.1000221)
B. Ratna Sunil, G. Pradeep Kumar Reddy, Duc Pham, Cogent Eng. 3 (2016) 1145565 (https://doi.org/10.1080/23311916.2016.1145565)
R. P. Mahto, S. Anishetty, A. Sarkar, O. Mypati, S. K. Pal, J. D. Majumdar, Met. Mater. Int. 25 (2019) 752 (https://doi.org/10.1007/s12540-018-00222-x)
F. Gharavi, K. A. Matori, R. Yunus, N. K. Othman, F. Fadaeifard, J. Mater. Res. Tech. 4 (2015) 314 (https://doi.org/10.1016/j.jmrt.2015.01.007)
K. Amini, F. Gharavi, J. Cent. South Univ. 23 (2016) 1301 (https://doi.org/10.1007/s11771-016-3180-3)
A. Davoodi, Z. Esfahani, M. Sarvghad, Corros. Sci. 107 (2016) 133 (https://doi.org/10.1016/j.corsci.2016.02.027)
Y. Feng, F. Yang, Y. Bi, Int. J. Electrochem. Sci. 17 (2022) 221039 (https://doi.org/10.20964/2022.10.40)
S. Khorsand, Y. Huang, in: A. Ratvik, (eds) Light Metals 2017. The Minerals, Metals & Materials Series. (2017) Springer, Cham. (https://doi.org/10.1007/978-3-319-51541-0_32)
M. Krol, P. Snopinski, B. Tomiczek, T. Tanski, W. Pakiela, W. Sitek, P. Est. Acad. Sci. 65 (2016) 107 (https://doi.org/10.3176/proc.2016.2.07)
D. A. Wadeson, X. Zhou, G. E. Thompson, P. Skeldon, L. D. Oosterkamp, G. Scamans, Corros. Sci. 48 (2006) 887 (https://doi.org/10.1016/j.corsci.2005.02.020)
H. Longgang, J. Jiajia, Z. Di, Z. Linzhong, Z. Li, J. Jishan, Rare. Metal. Mat. Eng. 46 (2017) 2437 (https://doi.org/10.1016/S1875-5372(17)30212-6)
C. Elanchezhian, B. V. Ramnath, P. Venkatesan, S. Sathish, T. Vignesh, R. V. Siddharth, K. Gopinath, Procedia. Eng. 97 (2014) 775 (https://doi.org/10.1016/j.proeng.2014.12.308)
O.M. Khalil, I. Mingareev, T. Bonhoff, A. F. El-Sherif, M. C. Richardson, M. A. Harith, Opt. Eng. 53 (2014) 014106 (https://doi.org/10.1117/1.OE.53.1.014106)
J. Martin, A. Nominé, V. Ntomprougkidis, S. Migot, S. Bruyère, F. Soldera, G. Henrion, Mater. Des. 180 (2019) 107977 (https://doi.org/10.1016/j.matdes.2019.107977)
R. H. U. Khan, A. Yerokhin, X. Li, H. Dong, A. Matthews, Surf. Coat. Tech. 205 (2010) 1679 (https://doi.org/10.1016/j.surfcoat.2010.04.052)
G. Gautam, N. Kumar, A. Mohan, R.K. Gautam, S. Mohan, J. Mater. Sci. 51 (2016) 8055 (https://doi.org/10.1007/s10853-016-0076-4)
M. Jin, B. Lee, J. Yoo, Y. Jo, S. Lee, Met. Mater. Int. (2024) (https://doi.org/10.1007/s12540-023-01594-5)
C. Rathinasuriyan, V. S. Kumar, J. Mech. Sci. Technol. 31 (2017) 3925 (https://doi.org/10.1007/s12206-017-0738-4)
Z. F. Syed, T. R. Tamilarasan, M. S. Dennison, Aust. J. Mech. Eng. 21 (2023) 844 (https://doi.org/10.1080/14484846.2021.1914891)
K. Chandra, V. Kain, Eng. Fail. Anal. 34 (2013) 387 (https://doi.org/10.1016/j.engfailanal.2013.09.007)
F. Gharavi, K. A. Matori, R. Yunus, N. K. Othman, F. Fadaeifard, Trans. Nonferrous Met. Soc. China. 26 (2016) 684 (https://doi.org/10.1016/S1003-6326(16)64159-6)
D. E. Newbury, N. W. Ritchie, Microsc. Microanal. 21 (2015) 1327 (https://doi.org/10.1017/S1431927615014993)
A. Laska, M. Szkodo, D. Koszelow, P. Cavaliere, Metals. 12 (2022) 192 (https://doi.org/10.3390/met12020192)
L. Veleva, Corrosion Tests and Standards: Application and Interpretation, R. Baboian (Ed.), ASTM International ISBN: 0-8031-2058-3 (2005), pp. 387-404
H. L. Qin, H. Zhang, D. T. Sun, Q. Y. Zhuang, Int. J. Miner. Metall. Mater. 22 (2015) 627 (https://doi.org/10.1007/s12613-015-1116-9)
F. T. Owoeye, O. R. Adetunji, A. Omotosho, A. P. Azodo, P. O. Aiyedun, Eng. Rep. 2 (2020) 12103 (https://doi.org/10.1002/eng2.12103)
N. R. Ramesh, V. S. Kumar, Appl. Ocean Res. 98 (2020) 102121 (https://doi.org/10.1016/j.apor.2020.102121)
E. Aldanondo, J. Vivas, P. Alvarez, I. Hurtado, Metals. 10 (2020) 872 (https://doi.org/10.3390/met10070872)
H. F. Wang, J. L. Wang, W. W. Song, D. W. Zuo, D. L. Shao, Int. J. Electrochem. Sci. 11 (2016) 6933 ((https://doi.org/10.20964/2016.08.09)
B. I. Attah, R. O. Medupin, T .D. Ipilakyaa, U. G. Okoro, O. Adedipe, G. Sule, O. M. Ikumapayi, K. C. Bala, E. T. Akinlabi, S. A. Lawal, A. S. Abdulrahman, Manuf. Rev. 11 (2024) 7 (https://doi.org/10.1051/mfreview/2024003)
Y. Wang, H. Jiang, X. Wu, Q. Meng, Crystals. 13 (2023) 582 (https://doi.org/10.3390/cryst13040582)
R. Saravanakumar, T. Rajasekaran, C. Pandey, J. Mater. Eng. Perform. 32 (2023) 10175 (https://doi.org/10.1007/s11665-023-07836-2)
S. Balamurugan, K. Jayakumar, A. S. Banu, K. Ragupathi, Eng. Proc. 61 (2024) 12 (https://doi.org/10.3390/engproc2024061012)
M. Starostin, G. E. Shter, G. S. Grader, Mater. Corros 67 (2016) 387 (https://doi.org/10.1002/maco.201508552)
M. Koilraj, A. Sathesh Kumar, D. L. Belgin Paul, S. R. Koteswara Rao, Appl. Mech Mater 813-814 (2015) 203 (https://doi.org/10.4028/www.scientific.net/AMM.813-814.203).