Coating technology on mortar surface for extending service life of on-site building construction

Main Article Content

Nidchamon Jumrus
https://orcid.org/0000-0003-4315-5988
Monwipa Thapinta
Patcharaporn Chaiwong
Arisara Panthawan
Tewasin Kumpika
https://orcid.org/0000-0002-4555-6585
Winai Thongpan
https://orcid.org/0000-0002-9117-2291
Niwat Jhuntama
https://orcid.org/0000-0001-6890-5197
Ekkapong Kantarak
Wattikon Sroila
https://orcid.org/0009-0006-8115-0642
Rattiyakorn Rianyoi
https://orcid.org/0000-0002-9047-719X
Pisith Singjai
https://orcid.org/0000-0001-5812-3896
Wiradej Thongsuwan
https://orcid.org/0000-0002-4859-5168

Abstract

The superhydrophobic, self-cleaning and anti-corrosion surface was successfully coated on mortar using an effective one-step spray coating technique. A coating solution was prepared by mixing methyltrichlorosilane-modified SiO2/TiO2 nanoparticles at different ratios to enhance the superhydrophobicity and reduce water absorption of the mortar. The sample prepared using a SiO2/TiO2 with the ratio of 75/25 was found to be optimal, exhibiting a high water contact angle and low sliding angle, which resulted in a reduction of water absorption more than 97.5 % and chloride ion penetration depth. Furthermore, the robustness of the superhydrophobic coating was analyzed against various tests including water drop impact, sand abrasion impact, tape peeling and sandpaper abrasion tests, with each test conducted over 10000 drops, 300 g, 60 cycles, and 5 cycles, respectively. Notably, the coating showed excellent water absorption reduction of 82.6 % after sandpaper abrasion for a length of 200 cm (20 cycles), even though the water contact angle was reduced to 118°. Thus, the fabrication of superhydrophobic mortar surface offers a novel, alternative approach that is simple, efficient, cost-effective and provides multifunction protection surface to increase the service life of on-site building construction with enhanced mechanical durability and anti-corrosion properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Jumrus, “ Coating technology on mortar surface for extending service life of on-site building construction”, J. Serb. Chem. Soc., Aug. 2024.
Section
Materials

References

W. Wang, S. Wang, D. Yao, X. Wang, X. Yu, Y. Zhang, Constr. Build. Mater. 238 (2020) 117626 (https://doi.org/10.1016/j.conbuildmat.2019.117626)

T. Xiang, J. Liu, Z. Lv, F. Wei, Q. Liu, Y. Zhang, H. Ren, S. Zhou, D. Chen, Constr. Build. Mater. 313 (2021) 125482 (https://doi.org/10.1016/j.conbuildmat.2021.125482)

L. Qu, Q. Wang, J. Mao, S. Xu, H. Zhang, Z. Shi, X. Li, Constr. Build. Mater. 313 (2021) 125540 (https://doi.org/10.1016/j.conbuildmat.2021.125540)

N. Jumrus, T. Chaisen, A. Sriboonruang, A. Panthawan, T. Kumpika, E. Kantarak, P. Singjai, W. Thongsuwan, Mater. Lett. 264 (2020) 127347 (https://doi.org/10.1016/j.matlet.2020.127347)

N. Jumrus, J. Jompaeng, A. Panthawan, T. Kumpika, O. Wiranwetchayan, P. Sanmuangmoon, W. Sroila, E. Kantarak, P. Singjai, W. Thongsuwan, Mater. Lett. 304 (2021) 130618 (https://doi.org/10.1016/j.matlet.2021.130618)

F. Jiang, T. Zhu, Y. Kuang, H. Wu, S. Li, Chem. Phys. Lett. 811 (2023) 140197 (https://doi.org/10.1016/j.cplett.2022.140197)

N. Jumrus, N. Suttanon, W. Sroila, P. Tippo, A. Panthawan, W. Thongpan, T. Kumpika, W. Sroila, R. Rianyoi, P. Singjai, W. Thongsuwan, Mater. Lett. 330 (2023) 133342 (https://doi.org/10.1016/j.matlet.2022.133342)

R.S. Sutar, S.D. Manadeshi, S.S. Latthe, S.R. Kulal, G.D. Salunkhe, K.K. Rangar, R.A. Lavate, S.B. Raut, A.C. Sapkal, A.K. Bhosale, K.K. Sadasivuni, S. Liu, R. Xing, Macromol. Symp. Special Issue:Advances in Materials Science — ICAMS 2020 (Part II) 393 (2020) 2000033 (http://dx.doi.org/10.1002/masy.202000033)

A. Sriboonrung, T. Kumpika, E. Kantarak, W. Sroila, P. Singjai, N. Lawan, S. Muangpil, W. Thongsuwan, Chiang Mai J. Sci. 47 (2020) 823-828 (https://epg.science.cmu.ac.th/ejournal/journal-detail.php?id=11108)

L. Dashairya, D.D. Barik, P. Saha, J. Coat. Technol. Res. 16 (2019) 1021-1032 (http://dx.doi.org/10.1007/s11998-018-00177-z)

K. Pacaphol, D. Aht-Ong, Surf. Coat. Technol. 320 (2017) 70–81 (https://doi.org/10.1016/j.surfcoat.2017.01.111)

K. Ganesan, K. Rajagopal, K. Thangavel, Cem. Concr. Compos. 29 (2007) 515-524 (https://doi.org/10.1016/j.cemconcomp.2007.03.001)

A. Yu, K.L. Yick, S.P. Ng, J. Yip, Y.F. Chan, Burns 46 (2020) 1548-1555 (https://doi.org/10.1016/j.burns.2020.04.014)

Z. Yin, M. Xue, Y. Ji, Z. Hong, C. Xie, Chem. Phys. Lett. 754 (2020) 137694 (https://doi.org/10.1016/j.cplett.2020.137694)

H. Kang, S. Kang, B. Lee, Materials 14 (2021) 5407

(https://doi.org/10.3390/ma14185407)

D. D. Prasad, K. Ravande, Int. J. Adv. Res. Eng. Technol. 12 (2021) 387-400 (https://iaeme.com/MasterAdmin/Journal_uploads/IJARET/VOLUME_12_ISSUE_1/IJARET_12_01_034.pdf)

C. Yao, A. Xie, Y. Shen, J. Zhu, T. Li, J. Chil. Chem. Soc. 58 (2013) 2235-2238 (http://dx.doi.org/10.4067/S0717-97072013000400072)

J. Wan, L.H. Xu, H. Pan, L.M. Wang, Y. Shen, J. Porous Mater. 28 (2021) 1501-1510 (http://dx.doi.org/10.1007/s10934-021-01089-x)

G. Semugaza, T. Mielke, M.E. Castillo, A. Gierth, J. X. Tam, S. Nawrath, D. Lupascu, Mater Struct. 56 (2023) 48 (http://dx.doi.org/10.1617/s11527-023-02133-9)

R. G. Toro, M. Diab, T. Caro, M. Al-Shemy, A. Adel, D. Caschera, Materials 13 (2020) 1326 (https://doi.org/10.3390/ma13061326)

J. Li, X. L. Wu, D. S. Hu, Y.M. Yang, T. Qiu, J. C . Shen, Solid State Commun. 131 (2004) 21–25 (https://doi.org/10.1016/j.ssc.2004.04.026)

Y. Wu, K. Yan, G. Xu, C. Yang, D. Wang, Prog. Org. Coat. 159 (2021) 106411 (https://doi.org/10.1016/j.porgcoat.2021.106411)

A. R. A. Javier, N. E. Lopez, J. B. P. Juanzon, Procedia Eng. 171 (2017) 543-548 (http://dx.doi.org/10.1016/j.proeng.2017.01.369)

L. V. Real, D. R. B. Oliveira, T. Soares, M. H. F. de Medeiros, Revista ALCONPAT 5 (2015) 141-151 (https://dx.doi.org/10.21041/ra.v5i2.84)