Coating technology on mortar surface for extending service life of on-site building construction Scientific paper

Main Article Content

Nidchamon Jumrus
https://orcid.org/0000-0003-4315-5988
Pisith Singjai
https://orcid.org/0000-0001-5812-3896
Rattiyakorn Rianyoi
https://orcid.org/0000-0002-9047-719X
Wattikon Sroila
https://orcid.org/0009-0006-8115-0642
Ekkapong Kantarak
Niwat Jhuntama
https://orcid.org/0000-0001-6890-5197
Winai Thongpan
https://orcid.org/0000-0002-9117-2291
Tewasin Kumpika
https://orcid.org/0000-0002-4555-6585
Arisara Panthawan
Patcharaporn Chaiwong
Monwipa Thapinta
Wiradej Thongsuwan
https://orcid.org/0000-0002-4859-5168

Abstract

The superhydrophobic, self-cleaning and anti-corrosion surface was successfully coated on mortar using an effective one-step spray coating tech­nique. A coating solution was prepared by mixing methyltrichlorosilane-modi­fied SiO2/TiO2 nanoparticles at different ratios to enhance the super­hydro­phob­icity and reduce water absorption of the mortar. The sample prepared using a SiO2/TiO2 with the ratio of 75/25 was found to be optimal, exhibiting a high water contact angle and low sliding angle, which resulted in a reduction of water absorption by more than 97.5 % and chloride ion penetration depth. Fur­thermore, the robustness of the superhydrophobic coating was analyzed against various tests including water drop impact, sand abrasion impact, tape peeling and sandpaper abrasion tests, each test was conducted with over 10000 drops, 300 g, 60 cycles and 5 cycles, respectively. Notably, the coating showed excellent water absorption reduction of 82.6 % after sandpaper abrasion for a length of 200 cm (20 cycles), even though the water contact angle was reduced to 118°. Thus, the fabrication of superhydrophobic mortar surface offers a novel, alternative approach that is simple, efficient, cost-effective and provides multi­function protection surface to increase the service life of on-site building cons­truction with enhanced mechanical durability and anti-corrosion properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Jumrus, “Coating technology on mortar surface for extending service life of on-site building construction: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 3, pp. 339–350, Mar. 2025.
Section
Materials

References

W. Wang, S. Wang, D. Yao, X. Wang, X. Yu, Y. Zhang, Constr. Build. Mater. 238 (2020) 117626 (https://doi.org/10.1016/j.conbuildmat.2019.117626)

T. Xiang, J. Liu, Z. Lv, F. Wei, Q. Liu, Y. Zhang, H. Ren, S. Zhou, D. Chen, Constr. Build. Mater. 313 (2021) 125482 (https://doi.org/10.1016/j.conbuildmat.2021.125482)

L. Qu, Q. Wang, J. Mao, S. Xu, H. Zhang, Z. Shi, X. Li, Constr. Build. Mater. 313 (2021) 125540 (https://doi.org/10.1016/j.conbuildmat.2021.125540)

N. Jumrus, T. Chaisen, A. Sriboonruang, A. Panthawan, T. Kumpika, E. Kantarak, P. Singjai, W. Thongsuwan, Mater. Lett. 264 (2020) 127347 (https://doi.org/10.1016/j.matlet.2020.127347)

N. Jumrus, J. Jompaeng, A. Panthawan, T. Kumpika, O. Wiranwetchayan, P. Sanmuangmoon, W. Sroila, E. Kantarak, P. Singjai, W. Thongsuwan, Mater. Lett. 304 (2021) 130618 (https://doi.org/10.1016/j.matlet.2021.130618)

F. Jiang, T. Zhu, Y. Kuang, H. Wu, S. Li, Chem. Phys. Lett. 811 (2023) 140197 (https://doi.org/10.1016/j.cplett.2022.140197)

N. Jumrus, N. Suttanon, W. Sroila, P. Tippo, A. Panthawan, W. Thongpan, T. Kumpika, W. Sroila, R. Rianyoi, P. Singjai, W. Thongsuwan, Mater. Lett. 330 (2023) 133342 (https://doi.org/10.1016/j.matlet.2022.133342)

R. S. Sutar, S. D. Manadeshi, S. S. Latthe, S. R. Kulal, G. D. Salunkhe, K. K. Rangar, R. A. Lavate, S. B. Raut, A. C. Sapkal, A. K. Bhosale, K. K. Sadasivuni, S. Liu, R. Xing, Macromol. Symp. Spec. Issue:Adv. Mat. Sc. — ICAMS 2020 (Part II) 393 (2020) 2000033 (http://dx.doi.org/10.1002/masy.202000033)

A. Sriboonrung, T. Kumpika, E. Kantarak, W. Sroila, P. Singjai, N. Lawan, S. Muangpil, W. Thongsuwan, Chiang Mai J. Sci. 47 (2020) 823-828 (https://epg.science.cmu.ac.th/ejournal/journal-detail.php?id=11108)

E. G. Atici, E. Kasapgil, I. Anac, H. Y. Erbil, Thin Solid Films 616 (2016) 101 (https://doi.org/10.1016/j.tsf.2016.07.041)

K. Pacaphol, D. Aht-Ong, Surf. Coat. Technol. 320 (2017) 70 (https://doi.org/10.1016/j.surfcoat.2017.01.111)

A. Yu, K.L. Yick, S.P. Ng, J. Yip, Y.F. Chan, Burns 46 (2020) 1548 (https://doi.org/10.1016/j.burns.2020.04.014)

Z. Yin, M. Xue, Y. Ji, Z. Hong, C. Xie, Chem. Phys. Lett. 754 (2020) 137694 (https://doi.org/10.1016/j.cplett.2020.137694)

K. Ganesan, K. Rajagopal, K. Thangavel, Cem. Concr. Compos. 29 (2007) 515 (https://doi.org/10.1016/j.cemconcomp.2007.03.001)

H. Kang, S. Kang, B. Lee, Materials 14 (2021) 5407 (https://doi.org/10.3390/ma14185407)

C. Yao, A. Xie, Y. Shen, J. Zhu, T. Li, J. Chil. Chem. Soc. 58 (2013) 2235 (http://dx.doi.org/10.4067/S0717-97072013000400072)

G. Richhariya, D. T. K. Dora, K. R. Parmar, K. K. Pant, N. Singhal, K. Lal, P. P. Kundu, Materials 13 (2020) 2921 (https://doi.org/10.3390/ma13132921)

J. Wan, L.H. Xu, H. Pan, L.M. Wang, Y. Shen, J. Porous Mater. 28 (2021) 1501 (http://dx.doi.org/10.1007/s10934-021-01089-x)

G. Semugaza, T. Mielke, M. E. Castillo, A. Gierth, J. X. Tam, S. Nawrath, D. Lupascu, Mater. Struct. 56 (2023) 48 (http://dx.doi.org/10.1617/s11527-023-02133-9)

R. G. Toro, M. Diab, T. Caro, M. Al-Shemy, A. Adel, D. Caschera, Materials 13 (2020) 1326 (https://doi.org/10.3390/ma13061326)

J. Li, X. L. Wu, D. S. Hu, Y. M. Yang, T. Qiu, J. C . Shen, Solid State Commun. 131 (2004) 21–25 (https://doi.org/10.1016/j.ssc.2004.04.026)

Y. Wu, K. Yan, G. Xu, C. Yang, D. Wang, Prog. Org. Coat. 159 (2021) 106411 (https://doi.org/10.1016/j.porgcoat.2021.106411)

A. R. A. Javier, N. E. Lopez, J. B. P. Juanzon, Procedia Eng. 171 (2017) 543 (http://dx.doi.org/10.1016/j.proeng.2017.01.369)

L. V. Real, D. R. B. Oliveira, T. Soares, M. H. F. de Medeiros, Revista ALCONPAT 5 (2015) 141 (https://dx.doi.org/10.21041/ra.v5i2.84).