A simple method for identification of native collagen by reversed-polarity electrophoresis: Short report Short communication

Main Article Content

Mario Chopin-Doroteo
https://orcid.org/0000-0002-7282-6202
Enrique Lima
https://orcid.org/0000-0002-5168-5981
Luís Mendoza
https://orcid.org/0009-0000-6860-4722
Edgar Krötzsch
https://orcid.org/0000-0002-0696-0147

Abstract

The high molecular weight of collagen and the high uncommon amino acid composition (proline and hydroxyproline) make the protein par­ti­cular at structural and physicochemical levels compared to others. Polyacryl­amide gel electrophoresis (PAGE) is a simple and inexpensive method to iden­tify collagen integrity; however, native forms of proteins generally show low quality bands. In this work, we considered the charge of the protein to perform a very simple method to identify the native form of type I collagen, exhibiting an appropriate electrophoretic resolution. First, we determined the collagen charge at different pHs and then modified a previously published method by changing the gel buffer and reversing the polarity of the electrophoresis cham­ber by turning the power cords; now the protein was moved from the anode to the cathode. The result was well-resolved protein bands that maintained their classical structure without degradation after PAGE, which were confirmed by extracting the protein from the native-PAGE and electrophoresing it in a sod­ium dodecyl sulphate-PAGE. This advantage could be useful when the electro­phoresed native collagen is used by Western blotting for recognition with anti­bodies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Chopin-Doroteo, E. Lima, L. Mendoza, and E. Krötzsch, “A simple method for identification of native collagen by reversed-polarity electrophoresis: Short report: Short communication”, J. Serb. Chem. Soc., vol. 90, no. 3, pp. 305–310, Mar. 2025.
Section
Electrochemistry

References

S. Ricard-Blum, Cold Spring Harb, Perspect. Biol. 3 (2011) a004978 (https://doi.org/10.1101%2Fcshperspect.a004978)

M. Shenoy, N. S. Abdul, Z. Qamar, B. M. A. Bahri, K. Z. K. Al Ghalayini, A. Kakti, Cureus 14 (2022) e24856 (https://doi.org/10.7759/cureus.24856)

I. N. Amirrah, Y. Lokanathan, I. Zulkiflee, M. F. M. R. Wee, A. Motta, M. B. Fauzi, Biomedicines 10 (2022) 2307 (https://doi.org/10.3390/biomedicines10092307)

Z. Deyl, M. Adam, J. Chrom. B: Biomed. Sci. App. 488 (1989) 161 (https://doi.org/10.1016/s0378-4347(00)82945-x)

J. R. Harris, A. Soliakov, R. J Lewis, Micron 49 (2013) 60 (https://doi.org/10.1016/j.micron.2013.03.004)

B. J. Bielajew, J. C. Hu, K. A. Athanasiou, Nat. Rev. Mater. 5 (2020) 730 (https://doi.org/10.1038/s41578-020-0213-1)

A. B. Nowakowski, W. J Wobig, D. H. Petering, Metallomics 6 (2014) 1068 (https://doi.org/10.1039/c4mt00033a)

S. Ricard-Blum, D. J. Hartmann, G. Ville, J. Chrom. B: Biomed. Sci. App. 530 (1990) 432 (https://doi.org/10.1016/s0378-4347(00)82346-4)

C. Arndt, S. Koristka, A. Feldmann, M. Bachmann, in: Electrophoretic Separation of Proteins. Methods in Molecular Biology, B. Kurien, R. Scofield, Eds., Humana Press, New York, 2019 (https://doi.org/10.1007/978-1-4939-8793-1_8)

U. K. Laemmli, Nature 227 (1970) 680 (https://doi.org/10.1038/227680a0)

J. A. Ramshaw, J. A Werkmeister, Anal. Biochem. 168 (1988) 82 (https://doi.org/10.1016/0003-2697(88)90013-9)

G. Leyva-Gómez, E. Lima, G. Krötzsch, R. Pacheco-Marín R. N. Rodríguez-Fuentes, D. Quintanar-Guerrero, E. Krötzsch, J. Phys. Chem., B 118 (2014) 9272 (https://doi.org/10.1021/jp502476x).

D. Shendi, J. Marzi, W. Linthicum, AJ. Rickards, DM. Dolivo, S. Keller, MA. Kauss, Q. Wen, TC. McDevitt, T. Dominko, K. Schenke-Layland, MW. Rolle. Acta Biomater. 100 (2019) 292 (https://doi.org/10.1016/j.actbio.2019.09.042).

L. Kumar, W. Colomb, J. Czerski, CR. Cox, SK. Sarkar. Protein Expr Purif. 148 (2018) 59 (https://doi.org/10.1016/j.pep.2018.04.001).

W. Kafienah, DJ. Buttle, D. Burnett, AP. Hollander. Biochem J. 330 (Pt 2) (1998) 897 (https://doi.org/10.1042/bj3300897).