A simple method for identification of native collagen by reversed-polarity electrophoresis: Short report Short communication

Main Article Content

Mario Chopin-Doroteo
https://orcid.org/0000-0002-7282-6202
Enrique Lima
https://orcid.org/0000-0002-5168-5981
Luís Mendoza
https://orcid.org/0009-0000-6860-4722
Edgar Krötzsch
https://orcid.org/0000-0002-0696-0147

Abstract

The high molecular weight of collagen and the high uncommon amino acid composition (proline and hydroxyproline) make the protein particular at structural and physicochemical levels compared to others. Polyacrylamide gel electrophoresis (PAGE) is a simple and inexpensive method to identify collagen integrity; however, native forms of proteins generally show low quality bands. In this work, we considered the charge of the protein to perform a very simple method to identify the native form of type I collagen, exhibiting an appropriate electrophoretic resolution. First, we determined the collagen charge at different pHs and then modified a previously published method by changing the gel buffer and reversing the polarity of the electrophoresis chamber by turning the power cords; now the protein was moved from the anode to the cathode. The result was well-resolved protein bands that maintained their classical structure without degradation after PAGE, which were confirmed by extracting the protein from the native-PAGE and electrophoresing it in a sodium dodecyl sulphate-PAGE. This advantage could be useful when the electrophoresed native collagen is used by Western blotting for recognition with antibodies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Chopin-Doroteo, E. Lima, L. Mendoza, and E. Krötzsch, “A simple method for identification of native collagen by reversed-polarity electrophoresis: Short report: Short communication”, J. Serb. Chem. Soc., Nov. 2024.
Section
Electrochemistry

References

S. Ricard-Blum, Cold Spring Harb, Perspect. Biol. 3 (2011) a004978 (https://doi.org/10.1101%2Fcshperspect.a004978)

M. Shenoy, N. S. Abdul, Z. Qamar, B. M. A. Bahri, K. Z. K. Al Ghalayini, A. Kakti, Cureus 14 (2022) e24856 (https://doi.org/10.7759/cureus.24856)

I. N. Amirrah, Y. Lokanathan, I. Zulkiflee, M. F. M. R. Wee, A. Motta, M. B. Fauzi, Biomedicines 10 (2022) 2307 (https://doi.org/10.3390/biomedicines10092307)

Z. Deyl, M. Adam, J. Chrom. B: Biomed. Sci. App. 488 (1989) 161 (https://doi.org/10.1016/s0378-4347(00)82945-x)

J. R. Harris, A. Soliakov, R. J Lewis, Micron 49 (2013) 60 (https://doi.org/10.1016/j.micron.2013.03.004)

B. J. Bielajew, J. C. Hu, K. A. Athanasiou, Nat. Rev. Mater. 5 (2020) 730 (https://doi.org/10.1038/s41578-020-0213-1)

A. B. Nowakowski, W. J Wobig, D. H. Petering, Metallomics 6 (2014) 1068 (https://doi.org/10.1039/c4mt00033a)

S. Ricard-Blum, D. J. Hartmann, G. Ville, J. Chrom. B: Biomed. Sci. App. 530 (1990) 432 (https://doi.org/10.1016/s0378-4347(00)82346-4)

C. Arndt, S. Koristka, A. Feldmann, M. Bachmann, Native Polyacrylamide Gels. In: B. Kurien, R. Scofield, (eds): Electrophoretic Separation of Proteins. Methods in Molecular Biology, 1855 (2019) Humana Press, New York, NY (https://doi.org/10.1007/978-1-4939-8793-1_8)

U. K. Laemmli, Nature.+ 227 (1970) 680 (https://doi.org/10.1038/227680a0)

J. A. Ramshaw, J. A Werkmeister, Anal. Biochem. 168 (1988) 82 (https://doi.org/10.1016/0003-2697(88)90013-9)

G. Leyva-Gómez, E. Lima, G. Krötzsch, R. Pacheco-Marín R. N. Rodríguez-Fuentes, D. Quintanar-Guerrero, E. Krötzsch, J. Phys. Chem. B. 118 (2014) 9272 (https://doi.org/10.1021/jp502476x)