Synthesis and mechanism of formation of hybrid structures comprising 2-oxochromene, thiazole and hydrazilidenechromene fragments Scientific paper

Main Article Content

Olga A. Mazhukina
https://orcid.org/0000-0002-6865-6116
Alexander Yu. Kostritsky
https://orcid.org/0000-0002-9154-3005
Vyacheslav S. Grinev
https://orcid.org/0000-0002-0627-6804
Yekaterina M. Arzyamova
https://orcid.org/0000-0002-2078-4151
Alevtina Yu, Yegorova
https://orcid.org/0000-0002-4368-0021

Abstract

Molecules with a hybrid structure containing 1,3-, 1,5-dicarbonyl frag­ments, based on 2H-chromen-2-one, hold significant potential as biologically active substances. A direct method has been developed for the preparation of thiosemicarbazones 2-(7-(aryl)-10,10-dimethyl-6-oxo-7,9,10,11-tetrahydro-6H,8H-chromeno[4,3-b]chromen-8-ylidene)hydrazine-1-carbothioamides. Their further modification by reaction with 3-bromoacetyl-2H-chromen-2-one was carried out, involving the thioamide group to form hybrid structures comprising 2-oxoch­romene, thiazole and hydrazineylidenechromene fragments (yield 71–97%). It is shown that hydrazine-1-carbothioamides can be obtained from both the initial 1,5-dicarbonyl compound and the product of its intramolecular O-heterocyc­lization. A one-step method is preferable, because the one-step method is prefer­red over the more labour-intensive two-step approach (with a similar yield). A plausible reaction mechanism is presented, based on quantum chemical calcul­ations of few possible tautomeric forms of the intermediates and the corres­ponding products. A comparative analysis of the 1H NMR spectrum of the exp­erimental sample and the spectra of several possible final products calculated by a quantum chemical method has also confirmed the chosen reaction pathway.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
O. A. Mazhukina, A. Y. Kostritsky, V. S. Grinev, Y. M. Arzyamova, and A. Y. Yegorova, “Synthesis and mechanism of formation of hybrid structures comprising 2-oxochromene, thiazole and hydrazilidenechromene fragments: Scientific paper”, J. Serb. Chem. Soc., Feb. 2026.
Section
Organic Chemistry
Author Biography

Vyacheslav S. Grinev, Institute of Chemistry, N. G. Chernyshevsky Saratov National Research State University, 83 Astrakhanskaya St., 410012 Saratov, Russian Federation

Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Entuziastov Pr., 410049 Saratov, Russian Federation

References

L. Bonsignore, G. Loy, D. Secci, A. Calignano, Eur. J. Med. Chem. 28 (1993) 517 (https://doi.org/10.1016/0223-5234(93)90020-F)

C. Seoane, N. Martin, C. Pascual, L. L. Soto, Heterocycles 26 (1987) 2811 (https://doi.org/10.3987/R-1987-11-2811)

T. Pengsuparp, M. Serit, S. H. Hughes, D. D. Soejarto, J. M. Pezzuto, J. Nat. Prod. 59 (1996) 839 (https://doi.org/10.1021/np960399y)

B.-S. Yun, I.-K. Lee, I.-J. Ryoo, I.-D. Yoo, J. Nat. Prod. 64 (2001) 1238 (https://doi.org/10.1021/np0100946)

E.-W. Abd, H. F. Ashraf, Pharmaceuticals 5 (2012) 745 (https://doi.org/10.3390/ph5070745)

G. Rajitha, V. Ravibabu, G. Ramesh, B. Rajitha, R. Jobina, B. Siddhardha, V. Laxmi, Res. Chem. Intermed. 41 (2015) 9703 (https://doi.org/10.1007/s11164-015-1959-8)

S. B. Mohamed, Y. Rachedi, M. Hamdi, F. Le Bideau, C. Dejean, F. Dumas, Eur. J. Org. Chem. (2016) 2628 (https://doi.org/10.1002/ejoc.201600173)

R. Velpula, R. Deshineni, R. Gali, R. Bavantula, Res. Chem. Intermed. 42 (2016) 1729 (https://doi.org/10.1007/s11164-015-2114-2)

A. Yu. Kostritsky, A. Yu. Yegorova, O. V. Fedotova, Int. J. Appl. Fund. Res. 12 (2021) 88 (https://doi.org/10.17513/mjpfi.13336)

D. Armesto, W. M. Horspool, N. Martin, A. Ramos, C. Seoane, J. Org. Chem. 54 (1989) 3069 (https://doi.org/10.1021/jo00274a021)

P. Chellan, S. Nasser, L. Vivas, K. Chibale, G. S. Smith, J. Organomet. Chem. 695 (2010) 2225 (https://doi.org/10.1016/j.jorganchem.2010.06.010)

C. C. García, B. N. Brousse, M. J. Carlucci, A. G. Moglioni, M. M. Alho, G. Y. Moltrasio, N. B. D’Accorso, E. B. Damonte, Antivir. Chem. Chemother. 14 (2003) 61 (https://doi.org/10.1177/095632020301400205)

R. J. Glisoni, D. A. Chiappetta, L. M. Finkielsztein, A. G. Moglioni, A. Sosnik, New J. Chem. 34 (2010) 2047 (https://doi.org/10.1039/C0NJ00061B)

A. S. Shawali, J. Adv. Res. 5 (2014) 1 (https://doi.org/10.1016/j.jare.2013.01.004)

P. Zhan, X. Liu, Y. Cao, Y. Wang, C. Pannecouque, E. De Clercq, Bioorg. Med. Chem. Lett. 18 (2008) 5368 (https://doi.org/10.1016/j.bmcl.2008.09.055)

A. M. Vijesh, A. M. Isloor, S. Telkar, S. K. Peethambar, S. Rai, N. Isloor, Eur. J. Med. Chem. 46 (2011) 3531 (https://doi.org/10.1016/j.ejmech.2011.05.005)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

A. D. Becke, Phys. Rev., A 38 (1988) 3098 (https://doi.org/10.1103/PhysRevA.38.3098)

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650 (https://doi.org/10.1063/1.438955).