Synthesis and mechanism of formation of hybrid structures comprising 2-oxochromene, thiazole and hydrazilidenechromene fragments

Main Article Content

Olga A. Mazhukina
https://orcid.org/0000-0002-6865-6116
Alexander Yu. Kostritsky
https://orcid.org/0000-0002-9154-3005
Vyacheslav S. Grinev
https://orcid.org/0000-0002-0627-6804
Yekaterina M. Arzyamova
https://orcid.org/0000-0002-2078-4151
Alevtina Yu, Yegorova
https://orcid.org/0000-0002-4368-0021

Abstract

Molecules with a hybrid structure containing 1,3-, 1,5-dicarbonyl fragments, based on 2H-chromen-2-one, hold significant potential as biologically active substances. A direct method has been developed for the preparation of thiosemicarbazones 2-(7-(aryl)-10,10-dimethyl-6-oxo-7,9,10,11-tetrahydro-6H,8H-chromeno[4,3-b]chromen-8-ylidene)hydrazine-1-carbothioamides. Their further modification by reaction with 3-bromoacetyl-2H-chromen-2-one was carried out, involving the thioamide group to form hybrid structures comprising 2-oxochromene, thiazole and hydrazineylidenechromene fragments (yield 71–97%). It is shown that hydrazine-1-carbothioamides can be obtained from both the initial 1,5-dicarbonyl compound and the product of its intramolecular O-heterocyclization. A one-step method is preferable, because the one-step method is preferred over the more labour-intensive two-step approach (with a similar yield). A plausible reaction mechanism is presented, based on quantum chemical calculations of few possible tautomeric forms of the intermediates and the corresponding products. A comparative analysis of the 1H NMR spectrum of the experimental sample and the spectra of several possible final products calculated by a quantum chemical method has also confirmed the chosen reaction pathway.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
O. A. Mazhukina, A. Y. Kostritsky, V. S. Grinev, Y. M. Arzyamova, and A. Y. Yegorova, “Synthesis and mechanism of formation of hybrid structures comprising 2-oxochromene, thiazole and hydrazilidenechromene fragments”, J. Serb. Chem. Soc., Dec. 2025.
Section
Organic Chemistry

References

L. Bonsignore, G. Loy, D. Secci, A. Calignano, Eur. J. Med. Chem. 28 (1993) 517–520 (https://doi.org/10.1016/0223-5234(93)90020-F )

C. Seoane, N. Martin, C. Pascual, L. L. Soto, Heterocycles 26 (1987) 2811–2816 (https://doi.org/10.3987/R-1987-11-2811 )

T. Pengsuparp, M. Serit, S. H. Hughes, D. D. Soejarto, J. M. Pezzuto, J. Nat. Prod. 59 (1996) 839–842 (https://doi.org/10.1021/np960399y )

B.-S. Yun, I.-K. Lee, I.-J. Ryoo, I.-D. Yoo, J. Nat. Prod. 64 (2001) 1238–1240 (https://doi.org/10.1021/np0100946 )

E.-W. Abd, H. F. Ashraf, Pharmaceuticals 5 (2012) 745–757 (https://doi.org/10.3390/ph5070745 )

G. Rajitha, V. Ravibabu, G. Ramesh, B. Rajitha, R. Jobina, B. Siddhardha, V. Laxmi, Res. Chem. Intermed. 41(2015) 9703–9713 (https://doi.org/10.1007/s11164-015-1959-8 )

S. B. Mohamed, Y. Rachedi, M. Hamdi, F. Le Bideau, C. Dejean, F. Dumas, Eur. J. Org. Chem. (2016) 2628-2636 (https://doi.org/10.1002/ejoc.201600173 )

R. Velpula, R. Deshineni, R. Gali, R. Bavantula, Res. Chem. Intermed. 42 (2016) 1729–1740 (https://doi.org/10.1007/s11164-015-2114-2 )

A. Yu. Kostritsky, A. Yu. Yegorova, O. V. Fedotova, Int. J. Appl. Fund. Res. 12 (2021) 88-93 (https://doi.org/10.17513/mjpfi.13336 )

D. Armesto, W. M. Horspool, N. Martin, A. Ramos, C. Seoane, J. Org. Chem. 54 (1989) 3069–3072 (https://doi.org/10.1021/jo00274a021 )

P. Chellan, S. Nasser, L. Vivas, K. Chibale, G. S. Smith, J. Organomet. Chem. 695 (2010) 2225–2232 (https://doi.org/10.1016/j.jorganchem.2010.06.010 )

C. C. García, B. N. Brousse, M. J. Carlucci, A. G. Moglioni, M. M. Alho, G. Y. Moltrasio, N. B. D’Accorso, E. B. Damonte, Antivir. Chem. Chemother. 14 (2003) 61–114 (https://doi.org/10.1177/095632020301400205 )

R. J. Glisoni, D. A. Chiappetta, L. M. Finkielsztein, A. G. Moglioni, A. Sosnik, New J. Chem. 34 (2010) 2047–2058 (https://doi.org/10.1039/C0NJ00061B )

A. S. Shawali, J. Adv. Res. 5 (2014) 1–17 (https://doi.org/10.1016/j.jare.2013.01.004 )

P. Zhan, X. Liu, Y. Cao, Y. Wang, C. Pannecouque, E. De Clercq, Bioorg. Med. Chem. Lett. 18 (2008) 5368–5371 (https://doi.org/10.1016/j.bmcl.2008.09.055 )

A. M. Vijesh, A. M. Isloor, S. Telkar, S. K. Peethambar, S. Rai, N. Isloor, Eur. J. Med. Chem. 46 (2011) 3531–3536 (https://doi.org/10.1016/j.ejmech.2011.05.005 )

A. D. Becke, J. Chem. Phys. 98 (1993) 5648–5652 (https://doi.org/10.1063/1.464913 )

A. D. Becke, Phys. Rev. A 38 (1988) 3098–3100 (https://doi.org/10.1103/PhysRevA.38.3098 )

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785–789 (https://doi.org/10.1103/PhysRevB.37.785 )

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650–654 (https://doi.org/10.1063/1.438955 ).