Synthesis and characterization of nano Fe2CuAl2O7 as a reusable catalyst for Biginelli reaction Scientific paper

Main Article Content

Marzieh M. Keshtiban
https://orcid.org/0009-0002-7064-3477
Abbas Nikoo
https://orcid.org/0000-0002-0021-7475
Bakhshali Massoumi
https://orcid.org/0000-0002-7720-2677

Abstract

In this research, the novel mixed metal oxide nanoparticles (NPs) Fe2CuAl2O7 were synthesized by applying sol-gel auto-combustion method. The Fe2CuAl2O7 NPs were identified by XRD, FT-IR, Mapping and EDS. The XRD pattern showed that Fe2CuAl2O7 NPs contain a crystalline structure and have just one phase, and types of crystals are FCC. The size distribution of Fe2CuAl2O7 NPs was determined by FESEM to be about 41.44 nm. Using the BET equation, the surface area of Fe2CuAl2O7 NPs was calculated as 26.174 m2 g-1. Fe2CuAl2O7 NPs were used as a catalyst for the Biginelli reaction. 3,4-Dihydropyrimidine-2(1H)-one/thione derivatives were prepared in the pre­sence of Fe2CuAl2O7 nanocatalyst with short time and 75–97 % efficiency in water. In addition, the recovery and the reuse of the Fe2CuAl2O7 nanocatalyst was done up to five times without significant change in catalytic ability.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. M. Keshtiban, A. Nikoo, and B. Massoumi, “Synthesis and characterization of nano Fe2CuAl2O7 as a reusable catalyst for Biginelli reaction: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 5, pp. 623–637, Jun. 2025.
Section
Physical Chemistry

References

Đ. Karanović, M. Hadnadjev-Kostic, T. Vulić, M. Milanovic, V. Rajakovic-Ognjanovic, R. Marinkovic-Neducin, J. Serb. Chem. Soc. 89 (2024) 667 (https://doi.org/10.2298/JSC231106005K)

P. Kannan, G. Maduraiveeran, Biosensors 13 (2023) 542 (https://doi.org/10.3390/bios13050542)

R. Lahkale, R. Sadik, W. Elhatimi, F. Z. Bouragba, A. Assekouri, K. Chouni, O. Rhalmi, E. Sabbar, Physica, B 626 (2022) 413367 (https://doi.org/10.1016/j.physb.2021.413367)

P. K. Boruah, A. Yadav, M. R. Das, J. Environ. Chem. Eng. 8 (2020) 104297 (https://doi.org/10.1016/j.jece.2020.104297)

A. H. Al-Hammadi, A. Alnehia, A. Al-Sharabi, H. Alnahari, A. B. Al-Odayni, Sci. Rep. 13 (2023) 12927 (https://doi.org/10.1038/s41598-023-39845-5)

P. M. Malibo, P. R. Makgwane, P. G. Baker, ChemistrySelect 5 (2020) 6255 (https://doi.org/10.1002/slct.201904852)

T. P. Mabate, N. P. Maqunga, S. Ntshibongo, M. Maumela, N. Bingwa, SN Appl. Sci. 5 (2023) 196 (https://doi.org/10.1007/s42452-023-05416-6)

S. Saha, M. R. Ali, M. A. Khaleque, M. S. Bacchu, M. A. Aly, M. Z. Khan, J. Drug Del. Sci. Tech. 13 (2023) 104728 (https://doi.org/10.1016/j.jddst.2023.104728)

D. Paul, A. Pandey, S. Neogi, World J. Microbiol. Biotechnol. 39 (2023) 281 (https://doi.org/10.1007/s11274-023-03712-2)

K. Kannan, D. Radhika, K. R. Reddy, A. V. Raghu, K. K. Sadasivuni, G. Palani, K. Gurushankar, Nano Express 2 (2021) 010014 (https://doi.org/10.1088/2632-959X/abdd87)

Y.S. Ko, H. J. Kim, C. W. Ha, C. Lee, Langmuir 36 (2020) 11809 (https://doi.org/10.1021/acs.langmuir.0c01515)

M. Rahmati, S. Shokri, M. Ahmadi, N. Marvi Moghadam, M. Goodarzi, R. Hazrati-

-Raziabad, Plant Biotechnol. Persa 4 (2022) 79 (http://dx.doi.org/10.52547/pbp.4.1.11)

C. Balamurugan, S. J. Song, H. S. Kim, C. Balamurugan, S. J. Song, H. S. Kim, J. Korean Ceram. Soc. 55 (2018) 1 (https://doi.org/10.4191/kcers.2018.55.1.10)

F. Wu, J. Bai, J. Feng, S. Xiong, Nanoscale 7 (2015) 17211 (https://doi.org/10.1039/C5NR04791A)

C. S. Lee, J. H. Choi, Y. H. Park, J. Ind. Eng. Chem. 29 (2015) 321 (https://doi.org/10.1016/j.jiec.2014.10.048)

S. S. Sultana, D. H. Kishore, M. Kuniyil, M. Khan, A. Alwarthan, K. R. Prasad, J. P. Labis, S. F. Adil, Arab. J. Chem. 8 (2015) 766 (https://doi.org/10.1016/j.arabjc.2015.05.008)

Y. Gao, X. Peng, Z. Zhang, W. Zhang, H. Li, B. Chen, S. Li, Y. Zhang, S. Chi, Mater. Res. Express. 8 (2021) 015509 (https://doi.org/10.1088/2053-1591/abdbf7)

N. Kumari, S. Kumar, M. Karmacharya, S. Dubbu, T. Kwon, V. Singh, K. H. Chae, A. Kumar, Y. K. Cho, I. S. Lee, Nano Lett. 21 (2020) 279 (https://doi.org/10.1021/acs.nanolett.0c03639)

N. S. Sarvestani, M. H. Abbaspour-Fard, M. Tabasizadeh, H. Nayebzadeh, T. C. Van, M. Jafari, Z. Ristovski, R. J. Brown, J. Alloys Compd. 838 (2020) 155627 (https://doi.org/10.1016/j.jallcom.2020.155627)

T. Priamushko, R. Guillet-Nicolas, M. Yu, M. Doyle, C. Weidenthaler, H. Tüysüz, F. Kleitz, ACS Appl. Energy Mater. 3 (2020) 5597 (https://doi.org/10.1021/acsaem.0c00544)

I. E. Wachs, Catal. Today 423 (2023) 113883 (https://doi.org/10.1016/j.cattod.2022.08.025)

D. Worch, W. Suprun, R. Gläser, Chem. Pap. 68 (2014) 1228 (https://doi.org/10.2478/s11696-013-0533-3)

A. M. Kremneva, A. V. Fedorov, O. A. Bulavchenko, Y. V. Knyazev, A. A. Saraev, V. A. Yakovlev, V. V. Kaichev, Catal. Lett. 150 (2020) 3377 (https://doi.org/10.1007/s10562-020-03250-8)

K. Ichikawa, T. Aoki, M. Akatsuka, M. Yamamoto, T. Tanabe, T. Yoshida, Catal. Lett. 154 (2024) 2008 (https://doi.org/10.1007/s10562-023-04424-w)

S. K. Singh, H. P. Uppara, P. M. Ramteke, H. Dasari, N. K. Labhasetwar, Chem. Pap. 78 (2024) 1805 (https://doi.org/10.1007/s11696-023-03206-3)

A. Nau, R. Pointecouteau, M. Richard, T. Belin, F. Can, C. Comminges, N. Bion, Catal. Commun. 180 (2023) 106704 (https://doi.org/10.1016/j.catcom.2023.106704)

J. Ludvíková, K. Jirátová, F. Kovanda, Chem. Pap. 66 (2012) 589 (https://doi.org/10.2478/s11696-011-0127-x)

F. Chang, Q. Zhou, H. Pan, X. F. Liu, H. Zhang, W. Xue, S. Yang, Energy Technol. 2 (2014) 865 (https://doi.org/10.1002/ente.201402089)

S. Toledo-Flores, R. Portillo, G. Del Angel, R. Gómez, React. Kin. Catal. Lett. 92 (2007) 361 (https://doi.org/10.1007/s11144-007-5188-z)

D. M. Bezerra, E. M. Assaf, Sci. Technol. Mater. 30 (2018) 166 (https://doi.org/10.1016/j.stmat.2018.07.001)

P. Gerhard, Phys. Sci. Rev. 7 (2022) 7 (https://doi.org/10.1515/psr-2020-0183)

E. Kabir, M. Uzzaman, Results Chem. 4 (2022) 100606 (https://doi.org/10.1016/j.rechem.2022.100606)

Y. M. Zohny, S. M. Awad, M. A. Rabie, O. A. Al-Saidan, Molecules 28 (2023) 784 (https://doi.org/10.3390/molecules28020784)

S. Bijani, D. Iqbal, S. Mirza, V. Jain, S. Jahan, M. Alsaweed, Y. Madkhali, S. A. Alsagaby, S. Banawas, A. Algarni, F. Alrumaihi, Life 12 (2022) 519 (https://doi.org/10.3390/life12040519)

V. B. Jadhav, H. V. Holla, S. U. Tekale, R. P. Pawar, Chem. Sin. 3 (2012) 1213 (https://www.imedpub.com/articles/bioactive-dihydropyrimidines-an-overview.pdf)

I. Essid, K. Lahbib, W. Kaminsky, C. B. Nasr, S. Touil, J. Mol. Struct. 1142 (2017) 130 (https://doi.org/10.1016/j.molstruc.2017.04.054)

N. R. Maurya, A. Patter, D. Singh, K. Ghosh, Catalysts 13 (2023) 234 (https://doi.org/10.3390/catal13020234)

F. Mohamadpour, M. Lashkari, J. Serb. Chem. Soc. 83 (2018) 673 (https://doi.org/10.2298/JSC170712041M)

G. Bosica, F. Cachia, R. D. Nittis, N. Mariotti, Molecules 26 (2021) 3753 (https://doi.org/10.3390/molecules26123753)

R. Tayebee, M. Ghadamgahi, Arab. J. Chem. 10 (2017) S757 (https://doi.org/10.1016/j.arabjc.2012.12.001)

L. Pirhadi, A. Rangaswamy, E. Soleimani, Polycyc. Aromat. Comp. 42 (2022) 4374 (https://doi.org/10.1080/10406638.2021.1891104)

M. Khashaei, L. Kafi-Ahmadi, S. Khademinia, A. Poursattar Marjani, E. Nozad, Sci. Rep. 12 (2022) 8585 (https://doi.org/10.1038/s41598-022-12589-4)

E. Kolvari, N. Koukabi, M. M. Hosseini, M. Vahidian, E. Ghobadi, RSC Adv. 6 (2016) 7419 (https://doi.org/10.1039/c5ra19350h)

S. Kalpana, V. S. Bhat, G. Hegde, T. N. Prabhu, P. N. Anantharamaiah, Chem. Pap. 78 (2024) 343 (https://doi.org/10.1007/s11696-023-03093-8)

M. Dara, M. Hassanpour, O. Amiri, M. Baladi, M. Salavati-Niasari, RSC Adv. 11 (2021) 26844 (https://doi.org/10.1039/D1RA02609G)

Y. Ma, C. Qian, L. Wang, M. Yang, J. Org. Chem. 65 (2000) 3864 (https://doi.org/10.1021/jo9919052)

R. Zheng, X. Wang, H. Xu, J. Du, Synth. Commun. 36 (2006) 1503 (https://doi.org/10.1080/00397910600588488)

P. Rajendra, J. Chavan, S. Patel, A. Beldar, V. Shinde, Chem. J. Mold. 17 (2022) 101 (https://doi.org/10.19261/cjm.2022.999)

F. Rajabi, M. Sillanpää, C. Len, R. Luque, Catalysts 12 (2022) 350 (https://doi.org/10.3390/catal12030350)

F. Ramezani Gomari, S. Farahi, H. Arvinnezhad, Iran. J. Chem. Chem. Eng. 40 (2021) 888 (https://doi.org/10.30492/ijcce.2020.38166)

A. Bamoniri, B. B. F. Mirjalili, M. Mahmoodi Fard Chegeni, J. Nanostruct. 10 (2020) 751 (https://doi.org/10.22052/JNS.2020.04.0008).