Synthesis and characterization of nano Fe2CuAl2O7 as a reusable catalyst for Biginelli reaction
Main Article Content
Abstract
In this research, novel mixed metal oxide nanoparticles (NPs) Fe2CuAl2O7 were synthesized by applying sol-gel auto-combustion method. The Fe2CuAl2O7 NPs were identified by XRD, FT-IR, Mapping and EDS. The XRD pattern showed that Fe2CuAl2O7 NPs contain a crystalline structure and have just one phase, and types of crystals are FCC. The size distribution of Fe2CuAl2O7 NPs was determined by FESEM to be about 41.44 nm. Using the BET equation, the surface area of Fe2CuAl2O7 NPs was calculated as 26.174 m2 g-1. Fe2CuAl2O7 NPs were used as a catalyst for the Biginelli reaction. 3,4-dihydropyrimidine-2(1H)-one/thione derivatives were prepared in the presence of Fe2CuAl2O7 nanocatalyst with short time and 75-97 % efficiency in water. In addition, recovery and reuse of Fe2CuAl2O7 nanocatalyst was done up to five times without significant change in catalytic ability.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
Đ. Karanović, M. Hadnadjev-Kostic, T. Vulić, M. Milanovic, V. Rajakovic-Ognjanovic, R. Marinkovic-Neducin, J. Serb. Chem. Soc. 89 (2024) 667 (https://doi.org/10.2298/JSC231106005K)
P. Kannan, G. Maduraiveeran, Biosensors 13 (2023) 542 (https://doi.org/10.3390/bios13050542)
R. Lahkale, R. Sadik, W. Elhatimi, F. Z. Bouragba, A. Assekouri, K. Chouni, O. Rhalmi, E. Sabbar, Physica B Condens. Matter 626 (2022) 413367 (https://doi.org/10.1016/j.physb.2021.413367)
P. K. Boruah, A. Yadav, M. R. Das, J. Environ. Chem. Eng. 8 (2020) 104297 (https://doi.org/10.1016/j.jece.2020.104297)
A. H. Al-Hammadi, A. Alnehia, A. Al-Sharabi, H. Alnahari, A. B. Al-Odayni, Sci. Rep. 13 (2023) 12927 (https://doi.org/10.1038/s41598-023-39845-5)
P. M. Malibo, P. R. Makgwane, P. G. Baker, ChemistrySelect 5 (2020) 6255 (https://doi.org/10.1002/slct.201904852)
T. P. Mabate, N. P. Maqunga, S. Ntshibongo, M. Maumela, N. Bingwa, SN Appl. Sci. 5 (2023) 196 (https://doi.org/10.1007/s42452-023-05416-6)
S. Saha, M. R. Ali, M. A. Khaleque, M. S. Bacchu, M. A. Aly, M. Z. Khan, J. Drug Del. Sci. Tech. 13 (2023) 104728 (https://doi.org/10.1016/j.jddst.2023.104728)
D. Paul, A. Pandey, S. Neogi, World J. Microbiol. Biotechnol. 39 (2023) 281 (https://doi.org/10.1007/s11274-023-03712-2)
K. Kannan, D. Radhika, K. R. Reddy, A. V. Raghu, K. K. Sadasivuni, G. Palani, K. Gurushankar, Nano Express 2 (2021) 010014 (https://doi.org/10.1088/2632-959X/abdd87)
Y.S. Ko, H. J. Kim, C. W. Ha, C. Lee, Langmuir. 36 (2020) 11809 (https://doi.org/10.1021/acs.langmuir.0c01515)
M. Rahmati, S. Shokri, M. Ahmadi, N. Marvi Moghadam, M. Goodarzi, R. Hazrati-Raziabad, Plant Biotechnol Persa. 4 (2022) 79 (http://dx.doi.org/10.52547/pbp.4.1.11)
C. Balamurugan, S. J. Song, H. S. Kim, C. Balamurugan, S. J. Song, H. S. Kim, J. Korean Ceram. Soc. 55 (2018) 1 (https://doi.org/10.4191/kcers.2018.55.1.10)
F. Wu, J. Bai, J. Feng, S. Xiong, Nanoscale 7 (2015) 17211 (https://doi.org/10.1039/C5NR04791A)
C. S. Lee, J. H. Choi, Y. H. Park, J. Ind. Eng. Chem. 29 (2015) 321 (https://doi.org/10.1016/j.jiec.2014.10.048)
S. S. Sultana, D. H. Kishore, M. Kuniyil, M. Khan, A. Alwarthan, K. R. Prasad, J. P. Labis, S. F. Adil, Arab. J. Chem. 8 (2015) 766 (https://doi.org/10.1016/j.arabjc.2015.05.008)
Y. Gao, X. Peng, Z. Zhang, W. Zhang, H. Li, B. Chen, S. Li, Y. Zhang, S. Chi, Mater. Res. Express. 8 (2021) 015509 (https://doi.org/10.1088/2053-1591/abdbf7)
N. Kumari, S. Kumar, M. Karmacharya, S. Dubbu, T. Kwon, V. Singh, K. H. Chae, A. Kumar, Y. K. Cho, I. S. Lee, Nano Lett. 21 (2020) 279 (https://doi.org/10.1021/acs.nanolett.0c03639)
N. S. Sarvestani, M. H. Abbaspour-Fard, M. Tabasizadeh, H. Nayebzadeh, T. C. Van, M. Jafari, Z. Ristovski, R. J. Brown, J. Alloys Compd. 838 (2020) 155627 (https://doi.org/10.1016/j.jallcom.2020.155627)
T. Priamushko, R. Guillet-Nicolas, M. Yu, M. Doyle, C. Weidenthaler, H. Tüysüz, F. Kleitz, ACS Appl. Energy Mater. 3 (2020) 5597 (https://doi.org/10.1021/acsaem.0c00544)
I. E. Wachs, Catal. Today. 423 (2023) 113883 (https://doi.org/10.1016/j.cattod.2022.08.025)
D. Worch, W. Suprun, R. Gläser, Chem. Pap. 68 (2014) 1228 (https://doi.org/10.2478/s11696-013-0533-3)
A. M. Kremneva, A. V. Fedorov, O. A. Bulavchenko, Y. V. Knyazev, A. A. Saraev, V. A. Yakovlev, V. V. Kaichev, Catal. Lett. 150 (2020) 3377 (https://doi.org/10.1007/s10562-020-03250-8)
K. Ichikawa, T. Aoki, M. Akatsuka, M. Yamamoto, T. Tanabe, T. Yoshida, Catal. Lett. 154 (2024) 2008 (https://doi.org/10.1007/s10562-023-04424-w)
S. K. Singh, H. P. Uppara, P. M. Ramteke, H. Dasari, N. K. Labhasetwar, Chem. Pap. 78 (2024) 1805 (https://doi.org/10.1007/s11696-023-03206-3)
A. Nau, R. Pointecouteau, M. Richard, T. Belin, F. Can, C. Comminges, N. Bion, Catal. Commun. 180 (2023) 106704 (https://doi.org/10.1016/j.catcom.2023.106704)
J. Ludvíková, K. Jirátová, F. Kovanda, Chem. Pap. 66 (2012) 589 (https://doi.org/10.2478/s11696-011-0127-x)
F. Chang, Q. Zhou, H. Pan, X. F. Liu, H. Zhang, W. Xue, S. Yang, Energy Technol. 2 (2014) 865 (https://doi.org/10.1002/ente.201402089)
S. Toledo-Flores, R. Portillo, G. Del Angel, R. Gómez, React. Kinet. Catal. Lett. 92 (2007) 361 (https://doi.org/10.1007/s11144-007-5188-z)
D. M. Bezerra, E. M. Assaf, Sci. Technol. Mater. 30 (2018) 166 (https://doi.org/10.1016/j.stmat.2018.07.001)
P. Gerhard, Phys. Sci. Rev. 7 (2022) 7 (https://doi.org/10.1515/psr-2020-0183)
E. Kabir, M. Uzzaman, Results Chem. 4 (2022) 100606 (https://doi.org/10.1016/j.rechem.2022.100606)
Y. M. Zohny, S. M. Awad, M. A. Rabie, O. A. Al-Saidan, Molecules 28 (2023) 784 (https://doi.org/10.3390/molecules28020784)
S. Bijani, D. Iqbal, S. Mirza, V. Jain, S. Jahan, M. Alsaweed, Y. Madkhali, S. A. Alsagaby, S. Banawas, A. Algarni, F. Alrumaihi, Life 12 (2022) 519 (https://doi.org/10.3390/life12040519)
V. B. Jadhav, H. V. Holla, S. U. Tekale, R. P. Pawar, Chem. Sin. 3 (2012) 1213 (https://www.imedpub.com/articles/bioactive-dihydropyrimidines-an-overview.pdf)
I. Essid, K. Lahbib, W. Kaminsky, C. B. Nasr, S. Touil, J. Mol. Struct. 1142 (2017) 130 (https://doi.org/10.1016/j.molstruc.2017.04.054)
N. R. Maurya, A. Patter, D. Singh, K. Ghosh, Catalysts. 13 (2023) 234 (https://doi.org/10.3390/catal13020234)
F. Mohamadpour, M. Lashkari, J. Serb. Chem. Soc. 83 (2018) 673 (https://doi.org/10.2298/JSC170712041M)
G. Bosica, F. Cachia, R. D. Nittis, N. Mariotti, Molecules 26 (2021) 3753 (https://doi.org/10.3390/molecules26123753)
R. Tayebee, M. Ghadamgahi, Arab. J. Chem. 10 (2017) S757 (https://doi.org/10.1016/j.arabjc.2012.12.001)
L. Pirhadi, A. Rangaswamy, E. Soleimani, Polycyc. Aromat. Comp. 42 (2022) 4374 (https://doi.org/10.1080/10406638.2021.1891104)
M. Khashaei, L. Kafi-Ahmadi, S. Khademinia, A. Poursattar Marjani, E. Nozad, Sci. Rep. 12 (2022) 8585 (https://doi.org/10.1038/s41598-022-12589-4)
E. Kolvari, N. Koukabi, M. M. Hosseini, M. Vahidian, E. Ghobadi, RSC Adv. 6 (2016) 7419 (https://doi.org/10.1039/c5ra19350h)
S. Kalpana, V. S. Bhat, G. Hegde, T. N. Prabhu, P. N. Anantharamaiah, Chem. Pap. 78 (2024) 343 (https://doi.org/10.1007/s11696-023-03093-8)
M. Dara, M. Hassanpour, O. Amiri, M. Baladi, M. Salavati-Niasari, RSC Adv. 11 (2021) 26844 (https://doi.org/10.1039/D1RA02609G)
Y. Ma, C. Qian, L. Wang, M. Yang, J. Org. Chem. 65 (2000) 3864 (https://doi.org/10.1021/jo9919052)
R. Zheng, X. Wang, H. Xu, J. Du, Synth. Commun. 36 (2006) 1503 (https://doi.org/10.1080/00397910600588488)
P. Rajendra, J. Chavan, S. Patel, A. Beldar, V. Shinde, Chem. J. Mold. 17 (2022) 101 (https://doi.org/10.19261/cjm.2022.999)
F. Rajabi, M. Sillanpää, C. Len, R. Luque, Catalysts 12 (2022) 350 (https://doi.org/10.3390/catal12030350)
F. Ramezani Gomari, S. Farahi, H. Arvinnezhad, Iran. J. Chem. Chem. Eng. 40 (2021) 888 (https://doi.org/10.30492/ijcce.2020.38166)
A. Bamoniri, B. B. F. Mirjalili, M. Mahmoodi Fard Chegeni, J. Nanostruct. 10 (2020) 751 (https://doi.org/10.22052/JNS.2020.04.0008)