Thermal, morphological and surface properties of composite materials with perlite reinforcement

Main Article Content

Ceyda Bilgiç
https://orcid.org/0000-0002-9572-3863
Naile Karakehya
https://orcid.org/0000-0002-0020-7867
Adam Voelkel
https://orcid.org/0000-0002-6536-8952

Abstract

This paper deals with the preparation and characterization of perlite/polyvinyl alcohol, perlite/polyvinylpyrrolidone, perlite/polymethyl methacrylate, and perlite/polystyrene composites. Polymer composites were prepared by solvent casting technique with 5 wt. % of perlite filler. Perlite is a filler with unique properties, such as low density and thermal conductivity, thus the development of Polymer-Perlite composites may be interesting for producing lighter packaging with thermal insulation capability. The perlite/polymer nanocomposites were characterized using X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), inverse gas chromatography (IGC), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). TGA measurements showed remarkable increases in the thermal stability of the polystyrene by the perlite loading as compared to the matrix. The FE-SEM image of the cryomilled sample shows that the perlite particles were embedded within a polystyrene matrix. This finding is consistent with the work of adhesion data obtained by IGC.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
C. Bilgiç, N. Karakehya, and A. Voelkel, “Thermal, morphological and surface properties of composite materials with perlite reinforcement”, J. Serb. Chem. Soc., Nov. 2024.
Section
Chemical Engineering
Author Biographies

Naile Karakehya, Department of Environmental Protection Technologies, Eskişehir Vocational School, Eskişehir Osmangazi University, Eskişehir, Türkiye

ORCID ID: 0000-0002-0020-7867

Adam Voelkel, Poznan University of Technology, Institute of Chemical Technology and Engineering, Poznań, Poland.

ORCID ID: 0000-0002-6536-8952

References

R. Sahraeian, M. Esfandeh, Polymer Bull. 74 (2017) 1327 (https://doi.org/10.1007/s00289-016-1779-z)

A. G. de Oliveira, J. C. Jandorno, E. B. D. da Rocha, A. M. F. de Sousa, A. L. N. da Silva, Appl. Clay Sci. 181 (2019) 105223 (https://doi.org/10.1016/j.clay.2019.105223)

M. Doğan, H. Yüksel, B. K. Kizilduman, Int. J. Mat. Res. 112 (2021) 405 (https://doi.org/10.1515/ijmr-2020-8007)

H. Tian, H. Tagaya, J. Mat. Sci. 43 (2008) 766 (https://doi.org/10.1007/s10853-007-2127-3)

M. Raji, S. Nekhlaoui, I.-E. El Hassani, E. Essassi, H. Essabir, D. Rodrigue, R. Bouhfid, A. Qaiss, Composites Part B: Eng> 165 (2019) 47 (https://doi.org/10.1016/j.compositesb.2018.11.098)

B. Strzemiecka, A. Voelkel, Int. J. Adh. Adhes. 38 (2012) 84 (https://doi.org/10.1016/j.ijadhadh.2012.05.006)

B. Strzemiecka, A. Voelkel, J. Donate-Robles, J. M. Martín-Martínez, J. Chrom. A 1314 (2013) 249 (https://doi.org/10.1016/j.chroma.2013.09.040)

C. Bilgiç, N. Karakehya, J. Adh. Sci. Technol. 30 (2016) 1945 (https://doi.org/10.1080/01694243.2016.1161968)

N. Karakehya, Int. J. Adh. Adhes. 110 (2021) 102949 (https://doi.org/10.1016/j.ijadhadh.2021.102949)

F. Cakar, Surf. Interf. Anal. 53 (2021) 258 (https://doi.org/10.1002/sia.6911)

A. Voelkel, B. Strzemiecka, K. Adamska, K. Milczewska, J. Chrom. A 1216 (2009) 1551 (https://doi.org/10.1016/j.chroma.2008.10.096)

A. Voelkel, Chapter 22 - Physicochemical measurements (inverse gas chromatography), in Handbooks in Separation Science, Gas Chromatography (Second Edition), C. F. Poole, Elsevier, Amsterdam, Netherlands, 2021, p. 561. (https://doi.org/10.1016/B978-0-12-820675-1.00013-7)

F. Thielmann, J. Chrom. A 1037 (2004) 115 (https://doi.org/10.1016/j.chroma.2004.03.060)

M. Teodorescu, M. Bercea, S. Morariu, Biotech. Adv/ 37 (2019) 109 (https://doi.org/10.1016/j.biotechadv.2018.11.008)

M. M. Chehimi, M.-L. Abel, C. Perruchot, M. Delamar, S. F. Lascelles, S. P. Armes, Synth. Metals 104 (1999) 51 (https://doi.org/10.1016/S0379-6779(99)00040-5)

T. Hamieh, M.-B. Fadlallah, J. Schultz, J. Chrom. A 969 (2002) 37 (https://doi.org/10.1016/S0021-9673(02)00369-2)

A. Aşkın, D. T. Yazıcı, Chromatographia 61 (2005) 625 (https://doi.org/10.1365/s10337-005-0558-z)

L. Lavielle, J. Schultz, Langmuir 7.5 (1991) 978 (https://doi.org/10.1021/la00053a027)

B. Lindsay, M.-L. Abel, J. F. Watts, Carbon 45.12 (2007) 2433-2444. (https://doi.org/10.1016/j.carbon.2007.04.017)

F. Bauer, R. Meyer, M. Bertmer, S. Naumov, M. Al-Naji, J. Wissel, M. Steinhart, D. Enke, Colloids Surf. A: Physicochem. Eng. Aspects 618 (2021) 126472 (https://doi.org/10.1016/j.colsurfa.2021.126472)

V. Gutmann, Coord. Chem. Rev. 2 (1967) 239 (https://doi.org/10.1016/S0010-8545(00)80206-4)

F. L. Riddle, F. M. Fowkes, JACS 112 (1990) 3259 (https://doi.org/10.1021/ja00165a001)

C. J. van Oss, Interfacial forces in aqueous media, Taylor & Francis Group, Boca Raton, USA, 2006 (https://doi.org/10.1201/9781420015768)

S. S. Uluatam, J. Amer. Water Works Assoc. 83 (1991) 70 (https://doi.org/10.1002/j.1551-8833.1991.tb07165.x)

E. Kolvari, N. Koukabi, M. M. Hosseini, J. Mol. Cat. A: Chem. 397 (2015) 68 (https://doi.org/10.1016/j.molcata.2014.10.026)

L. A. García-Cerda, M. U. Escareño-Castro, M. Salazar-Zertuche, J. Non-Cryst. Solids 353 (2007) 808 (https://doi.org/10.1016/j.jnoncrysol.2006.12.046)

Y.-H. Wu, D.-G. Yu, H.-P. Li, X.-Y. Wu, X.-Y. Li, e-Polymers 17.1 (2017) 39 (https://doi.org/10.1515/epoly-2016-0244)

I. S. Tsagkalias, T. K. Manios, D. S. Achilias, Polymers 9 (2017) 432 (https://doi.org/10.3390/polym9090432)

T. E. Motaung, A. S. Luyt, M. L. Saladino, D. C. Martino, E. Caponetti, Exp. Polymer Lett. 6 (2012) 871 (https://doi.org/10.3144/expresspolymlett.2012.93)

A. M. Hussein, E. M. A. Dannoun, S. B. Aziz, M. A. Brza, R. T. Abdulwahid, S. A. Hussen, S. Rostam, D. M. T. Mustafa, D. S. Muhammad, Polymers 12 (2020) 2320 (https://doi.org/10.3390/polym12102320)

N.A. Betti, Eng. Technol. J. Part A 34 (2016) 2433 (https://doi.org/10.30684/etj.34.13A.6)

L. Moradi, M. Mirzaei, RSC Adv. 9 (2019) 19940 (https://doi.org/10.1039/C9RA03312B)

K. Srivastava, N. Shringi, V. Devra, A. Rani, Int. J. Innov. Res. Sci. Eng. Techn. 2 (2013) 2936 (https://www.ijirset.com/upload/july/49_%20Pure%20Silica.pdf)

Z. Zujovic, W. V. K. Wheelwright, P. A. Kilmartin, J. V. Hanna, R. P. Cooney, Ceramics Int. 44 (2018) 2952 (https://doi.org/10.1016/j.ceramint.2017.11.047)

P. Spasojević, V. Panić, S. Šešlija, V. Nikolić, I. Popović, S. Veličković, J. Serb. Chem. Soc. 80 (2015) 1177 (https://doi.org/10.2298/JSC150123034S)

S. Ramesh, L. C. Wen, Ionics 16 (2010) 255 (https://doi.org/10.1007/s11581-009-0388-3)

M. Robotti, S. Dosta, I. G. Cano, A. Concustell, N. Cinca, J. M. Guilemany, Adv. Pow. Techn. 27 (2016) 1257 (https://doi.org/10.1016/j.apt.2016.04.014)

M. Nisar, M. da Graça Sebag Bernd, C. P. da Silva Filho Luiz, J. Geshev, N. R. de Souza Basso, G. B. Galland, J. App. Pol. Sci. 135 (2018) 46820. (https://doi.org/10.1002/app.46820)

A. Mostafaei, A. Zolriasatein, Prog. Nat. Sci.: Mat. Int. 22 (2012) 273 (https://doi.org/10.1016/j.pnsc.2012.07.002)