Effect of microwave power level and processing time on the quality of palm shell charcoal (Elaeis guineensis Jacq.) briquettes Scientific paper

Main Article Content

Lina Lestari
https://orcid.org/0009-0008-2637-4445
Sapto Raharjo
https://orcid.org/0009-0007-5734-8285
I Nyoman Sudiana
https://orcid.org/0000-0002-8872-6986
La Ode Rusman
https://orcid.org/0000-0002-2288-4658
Niken Sulastri
https://orcid.org/0000-0003-1067-241X

Abstract

One of the developmOne of the developments in renewable energy sources is use of bio­mass. This research aims to analyze the effect of power (70, 150 and 230 W) and activation time of palm shell charcoal using microwave during different time intervals (360, 480 and 600 s) on the density, moisture, ash content and volatile matter of palm shell charcoal briquettes. Charcoal briquettes are obtained from the carbonization process at a temperature of 548.7°C for 6 h, grinding and siev­ing at 80–100 mesh, activation using a microwave at a fixed time of 480 s with variations in activation power of 70, 150 and 230 W and fixed 150 W with vari­ations in activation time of 360, 480 and 600 s. The research results showed that the density of palm shell charcoal briquettes ranged from 0.51–0.54 g/cm3, the water content ranged from 3.31–3.92 %, the ash content ranged from 7.13–7.86 % and the volatile matter ranged from 8.19–9.22 %. SEM characterization shows that microwave activation increases the number of pores evenly and enlarges the pores. From the research results, the power and activation time vastly improve the quality of palm shell charcoal briquettes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Lestari, S. Raharjo, I. N. Sudiana, L. O. Rusman, and N. Sulastri, “Effect of microwave power level and processing time on the quality of palm shell charcoal (Elaeis guineensis Jacq.) briquettes: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 9, pp. 1069–1087, Oct. 2025.
Section
Physical Chemistry

References

A. Rahman, O. Farrok, M. M. Haque, Renew. Sustain. Energy Rev. 161 (2022) 112279 (https://doi.org/10.1016/j.rser.2022.112279)

M. M. Tun, D. Juchelkova, M. M. Win, A. M. Thu, T. Puchor. Resources 8 (2019) 81 (https://doi.org/10.3390/resources8020081)

BPS-Statistics Indonesia Sulawesi Tenggara Province (February 28, 2023). Sulawesi Tenggara Province in Figures 2023. (https://sultra.bps.go.id/en/publication/2023/02/28/1828fe18cd21a894338918f9/provinsi-sulawesi-tenggara-dalam-angka-2023.html) (July 19, 2024)

D. L. A. Gaveau, B. Locatelli, M. A. Salim, Husnayaen, T. Manurung, A. Descals, A. Angelsen, E. Meijaard, D. Sheil, PloS One 17 (2022) e0266178 (https://doi.org/10.1371/journal.pone.0266178)

Wu, T. C. Qiang, G. Zeng, H. Zhang, Y. Huang,Y. Wang, Int. J. Hydrogen Energy 42 (2017) 23871-23877 (https://doi.org/10.1016/j.ijhydene.2017.03.147)

S. Raharjo, L. Lestari, I. Saleh, I. N. Sudiana, A. Dewi. J. World Sci. 2 (2023) 310 (https://doi.org/10.58344/jws.v2i3.249)

A. O. Otieno, P. G. Home, J. M. Raude, S. I. Murunga, A. Gachanja. Heliyon 8 (2022) e10272 (https://doi.org/10.1016/j.heliyon.2022.e10272)

P. Martens, H. Czech, J. Tissari, M. Ihalainen, H. Suhonen, M. Sklorz, J. Jokiniemi, O. Sippula, R. Zimmermann, Energy Fuels 35 (2021) 14010 (https://doi.org/10.1021/acs.energyfuels.1c01667)

S. Nanda, F. Berruti, J. Haz. Mat. 403 (2021) 123970 (https://doi.org/10.1016/j.jhazmat.2020.123970)

C. Geng, W. Zhong, Z. Bian, X. Liu, Fuel 331 (2023) 125832 (https://doi.org/10.1016/j.fuel.2022.125832)

W. Spencer, G. Senanayake, M. Altarawneh, D. Ibana, A. N. Nikoloski, Minerals Eng. 212 (2024) 108712 (https://doi.org/10.1016/j.mineng.2024.108712)

L. Lestari, V. I. Variani, I. N. Sudiana, M. Z. Firihu, S. Raharjo, L. Agusu, A. Dewi, J. Phys.: Conf. Ser. 1153 (2019) 012076 (https://doi.org/10.1088/1742-6596/1153/1/012076)

B. O. Bonsu, M. Takase, J. Mantey, Heliyon 6 (2020) e05266 (https://doi.org/10.1016/j.heliyon.2020.e05266)

S. Y. Kpalo, M. F. Zainuddin, L. A. Manaf, A. M. Roslan, Sustainability 12 (2020) 2468 (https://doi.org/10.3390/su12062468)

J. Cheng, Y. Zhang, T. Wang, H. Xu, P. Norris, W. P. Pan, Fuel 225 (2018) 554 (https://doi.org/10.1016/j.fuel.2018.03.185)

N. Z. J. Zakaria, S. Rozali, N. M. Mubarak, S. Ibrahim, Biomass Conv. Bioref. 14 (2024) 13-44 (https://doi.org/10.1007/s13399-022-02430-3)

H. M. P. Marreiro, R. S. Peruchi, R. M. B. P. Lopes, S. L. F. Andersen, S. A. Eliziário, P. R. Junior, Energies 14 (2021) 8320 (https://doi.org/10.3390/en14248320)

P. Gustan, L. Efiyanti, S. Darmawan, N. A. Saputra, D. Hendra, A. D. Joseph, A. Inkriwang, R. Effendi, J. Korean Wood Sci. Technol. 51 (2023) 207 (https://doi.org/10.5658/WOOD.2023.51.3.207)

Z. Wang, Y. Cheng, K. Zhang, C. Hao, L. Wang, W. Li, W. B. Hu, Fuel 232 (2018) 495 (https://doi.org/10.1016/j.fuel.2018.06.004)

S. Khodabakhshi, P. F. Pasquale, E. Andreoli, Carbon 162 (2020) 604 (https://doi.org/10.1016/j.carbon.2020.02.058)

M. R. Sanghvi, H. T. Omkar, A. P. More Polymer Bull. 79 (2022) 10491 (https://doi.org/10.1007/s00289-021-04022-z)

C. Antwi-Boasiako, B. B. Acheampong, Biomass Bioenergy 85 (2016) 144 (https://doi.org/10.1016/j.biombioe.2015.12.006)

E. D. Vicente, A. Vicente, M. Evtyugina, R. Carvalho, L. A. Tarelho, F. I. Oduber, C. Alves, Fuel Process. Technol. 176 (2018) 296 (https://doi.org/10.1016/j.fuproc.2018.03.004)

Z. Li, K. Peng, N. Ji, W. Zhang, W. Tian, W. Z. Gao, Nanoscale Adv. 7 (2025) 419 (https://doi.org/10.1039/d4na00701h)

L. Lestari, S. Raharjo, I. N. Sudiana, L. O. Rusman, S. J. Manikam, World Sci. 3 (2024) 1198-1207 (https://doi.org/10.58344/jws.v3i9.1184)

K. Y. Foo, B. H. Hameed, Biomass Bioenergy 35 (2011) (7) 3257 (https://doi.org/10.1016/j.biortech.2011.09.116)

A. Awitdrus, Y. Pradita, R. Farma, Iwantono, J. Technomater. Phys. 1 (2019) 56 (https://doi.org/10.32734/jotp.v1i1.820)

W. Astuti, K. Wijaya, Rochmadi, J. Mater. Res. Technol 9 (2020) 5108 (https://doi.org/10.15294/jbat.v9i02.21991)

S. Zhang, M. Zheng, Y. Tang, R. Zang, X. Zhang, X. Huang, Y. Cheng, Y. Yamauchi, S. Kaskel, H. Pang, Adv. Funct. Mater. 32 (2022) 2204714 (https://doi.org/10.1002/adfm.202204714)

K. Malini, D. Selvakumar, N. Kumar, J. CO2 Util. 67 (2023) 102318 (https://doi.org/10.1016/j.jcou.2022.102318)

W. Deng, M. Hu, J. Ma, Y. Su, R. Ruan, J. Clean. Prod. 259 (2020) 120907 (https://doi.org/10.1016/j.jclepro.2020.120907)

M. O. Yusuf, Appl. Sci. 13 (2023) 3353 (https://doi.org/10.3390/app13053353)

M. Asemani, A. R. J. Rabbani, Pet. Sci. Eng. 185 (2020) 106618 (https://doi.org/10.1016/j.petrol.2019.106618)

D. Karolina, M. S, Maja, D. S. Magdalena, Ż. Grażyna, Spectrochim. Acta, A 279 (2022) 121404 (https://doi.org/10.1016/j.saa.2022.121404)

N. S. Nemeş, A. Negrea, Microb. Electrochem. Technol. 1 (2023) 163 (https://doi.org/10.1002/9783527839001.ch6).