Evaluation of antimicrobial, anticancer, and neuroprotective activities of silver nanoparticles (AgNPs) green-synthesized using a red pigment produced by Streptomyces sp. A23 strain isolated from Algerian bee pollen

Main Article Content

Mr. Mohamed Mokhnache
https://orcid.org/0009-0007-5542-2656
Dr. Hani Belhadj
https://orcid.org/0000-0002-8251-0770
Dr Fatih Doğan Koca
https://orcid.org/0000-0001-9774-3019
Dr Gökhan Ünal
https://orcid.org/0000-0001-9027-6606
Mr. Abdulrahman Nasrat
https://orcid.org/0009-0003-1186-1156
Miss. Ayşegül Basma
https://orcid.org/0009-0008-9309-9519
Mr. Mehmet Bozkurt
https://orcid.org/0000-0003-2965-6719
Mr. Ahmed Alien
https://orcid.org/0000-0002-9762-6223
Pr. Daoud Harzallah
https://orcid.org/0000-0002-2277-0319

Abstract

In this work, the red pigment of Streptomyces sp. A23 strain isolated from Algerian bee pollen was used for the green synthesis of silver nanoparticles (AgNPs) as well as for evaluating their antimicrobial, anticancer, and neuroprotective activities. AgNPs were synthesized as a result of the reduction of 1 mM and 5 mM silver nitrate solutions at various pH values (5, 7 and 9), and were subsequently characterized. AgNPs (5 mM, pH 9) exhibited a maximum UV-vis absorbance at 433 nm. DLS revealed that the average diameter was 112 nm. A zeta potential peak was found at -33 mV corresponding to increased stability. XRD analysis confirmed the crystallization nature of the material. Furthermore, FT-IR analysis revealed specific functional groups at 3471 cm-1 to 478 cm-1. In addition, FE-SEM showed that the mean size of the spherical AgNPs was 54.5 nm in diameter. The presence of Ag was revealed by EDX analysis. Additionally, good antimicrobial activity was observed against E. faecalis ATCC 19433, C. albicans ATCC 10231, S. aureus ATCC 6538P, P. aeruginosa ATCC 27853, B. subtilis ATCC 6633, K. pneumoniae ATCC 13883 and E. coli ATCC 7839, with inhibition zones of 32, 30, 30, 27, 25, 20 and 19 mm, respectively. The lowest MIC and MBC were recorded against B. subtilis ATCC 6633 with a value of 62.5 μg mL-1. Intriguingly, all the synthesized AgNPs at concentrations of 2, 4, and 8 μg mL-1 had cytotoxic effects on SH-SY5Y neuroblastoma cell lines. In addition, AgNPs (1 mM, pH 7) exhibited significant neuroprotective activity at the lowest tested concentration. Finally, AgNPs synthesized using the red pigment of Streptomyces sp. strain A23 are promising therapeutic agents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Mokhnache, “Evaluation of antimicrobial, anticancer, and neuroprotective activities of silver nanoparticles (AgNPs) green-synthesized using a red pigment produced by Streptomyces sp. A23 strain isolated from Algerian bee pollen”, J. Serb. Chem. Soc., Jan. 2025.
Section
Biochemistry & Biotechnology

References

S. Malik, K. Muhammad, Y. Waheed, Molecules 28 (2023) 6624 (https://doi.org/10.3390/molecules28186624)

L. Xu, Y. Y. Wang, J. Huang, C. Y. Chen, Z. X. Wang, H. Xie, Theranostics 10(20) (2020) 8996 (https://doi.org/10.7150/thno.45413)

A. Dhaka, S. C. Mali, S. Sharma, R. Trivedi, Results Chem. 6 (2023) 1-21 (https://doi.org/10.1016/j.rechem.2023.101108)

S. Barbuto Ferraiuolo, M. Cammarota, C. Schiraldi, O. F. Restaino, Appl. Microbiol. Biotechnol .105 (2021) 551‑568 (https://doi.org/10.1007/s00253-020-11064-2)

A. Rosyidah, O. Weeranantanapan, N. Chudapongse, W. Limphirat, N. Nantapong, RSC Adv. 12 (2022) 4336 (https://doi.org/10.1039/D1RA08238H)

N. A. Al-Dhabi, A. K. M. Ghilan, M. V. Arasu, V. Duraipandiyan, J. Photoch. Photob. B: Bio. 189 (2018) 176‑184 (https://doi.org/10.1016/j.jphotobiol.2018.09.012)

S. S. Pallavi, H. A. Rudayni, A. Bepari, S. K. Niazi, S. Nayaka, Saudi J. Biol. Sci. 29 (2022) 228‑238 (https://doi.org/10.1016/j.sjbs.2021.08.084)

N. Singh, B. Naik, V. Kumar, V. Kumar, S. Gupta, J. Microbiol. Biotech. Food Sci. 10(4) (2021) 604‑608 (https://doi.org/10.15414/jmbfs.2021.10.4.604-608)

M. S. Mechouche, F. Merouane, C. E. H. Messaad, N. Golzadeh, Y. Vasseghian, M. Berkani, Environ. Res. 204 (2022) 1-14 (https://doi.org/10.1016/j.envres.2021.112360)

K. D. Datkhile, S. Chakraborty, P. P. Durgawale, S. R. Patil. Pharm. Nanotechnol. 12(4) (2024) 340-350 (https://doi.org/10.2174/2211738511666230913095001)

C. Ghosh, P. Sarkar, R. Issa, J. Haldar, Trends Microbiol. 27(4) (2019) 323‑338 (https://doi.org/10.1016/j.tim.2018.12.010)

H. M. Abd-Elhady, M. A. Ashor, A. Hazem, F. M. Saleh, S. Selim, N. El Nahhas, S. H. Abdel-Hafez, S. Sayed, E. A. Hassan, Molecules 27 (2022) 1-14 (https://doi.org/10.3390/molecules27010212)

K. Aabed, A. E. Mohammed, Front. Bioeng. Biotechnol. 9 (2021) 1-14 (https://doi.org/10.3389/fbioe.2021.652362)

K. Kopeć, S. Szleszkowski, D. Koziorowski, S. Szlufik, Int. J. Mol. Sci. 24 (2023) 1-18 (https://doi.org/10.3390/ijms241210366)

M. Xu, X. Han, H. Xiong, Y. Gao, B. Xu, G. Zhu, J. Li, Molecules 28 (2023) 1-20 (https://doi.org/10.3390/molecules28135145)

F. E. Salem, H. M. Yehia, S. M. Korany, K. M. Alarjani, A. H. Al-Masoud, M. F. Elkhadragy, Food Sci. Technol. 42 (2022) 1-12 (https://doi.org/10.1590/fst.97322)

J. Baranwal, B. Barse, A. Di Petrillo, G. Gatto, L. Pilia, A. Kumar, Materials 16 (2023) 1-24 (https://doi.org/10.3390/ma16155354)

F. D. Zhu, Y. J. Hu, L. Yu, X. G. Zhou, J. M. Wu, Y. Tang, D. L. Qin, Q. Z. Fan, A. G. Wu, Front. Pharmacol. 12 (2021) 1-19 (https://doi.org/10.3389/fphar.2021.683935)

E. Hernández-Bolaños, D. Montesdeoca-Flores, E. Abreu-Yanes, M. L. Barrios, N. Abreu-Acosta, Curr. Microbiol. 77 (2020) 2510‑2522 (https://doi.org/10.1007/s00284-020-02030-2)

H. Mohamed, B. Miloud, F. Zohra, J. M. García-Arenzana, A. Veloso, S. Rodríguez-Couto, Int. J. Mol. Cell. Med. 6(2) (2017) 109-120 (https://doi.org/10.22088/acadpub.BUMS.6.2.5)

A. C. Smith, M. A. Hussey, ASM (2005) 1-9 (https://asm.org:443/Protocols/Gram-Stain-Protocols)

M. Lakhdar, D. Abir, M. Fatna, J. Agric. Appl. Bio. 4(1) (2023) 71-82 (https://doi.org/10.11594/jaab.04.01.08)

A. Tandale, M. Khandagale, R. Palaskar, S. Kulkarni, Int. J. Curr. Res. Life Sci. 7(6) (2018) 2397-2402 (http://www.journalijcrls.com/sites/default/files/issues-pdf/01212.pdf)

E. T. Shirling, D. Gottlieb, Int. J. Syst. Evol. Microbiol. 16(3) (1966) 313‑340 (https://doi.org/10.1099/00207713-16-3-313)

M. Mahfooz, S. Dwedi, A. Bhatt, S. Raghuvanshi, M. Bhatt, P. K. Agrawal, Int. J. Curr. Microbiol. App. Sci. 6(7) (2017) 4084-4100 (https://doi.org/10.20546/ijcmas.2017.607.424)

M. Goodfellow, K. A. Peter, H. J. Busse, M. F. Trujillo, W. Ludwig, K. I. Suzuki, A. Parte, Bergey’s Manual® of Systematic Bacteriology, Springer, New York, USA, 2012 (https://doi.org/10.1007/978-0-387-68233-4)

F. Z. Djebbah, N. A. Al-Dhabi, M. V. Arasu, L. Belyagoubi, F. Kherbouche, D. E. Abdelouahid, B. Ravindran, J. King Saud Univ. Sci. 34 (2022) 101719 (https://doi.org/10.1016/j.jksus.2021.101719)

M. S. Almuhayawi, M. S. Mohamed, M. Abdel-Mawgoud, S. Selim, S. K. Al Jaouni, H. AbdElgawad, Biology 10 (2021) 1-22 (https://doi.org/10.3390/biology10030235)

T. Nuanjohn, N. Suphrom, N. Nakaew, W. Pathom-Aree, N. Pensupa, A. Siangsuepchart, J. Jumpathong, Molecules 28 (2023) 1-18 (https://doi.org/10.3390/molecules28165949)

N. K. Ahila, V. S. Ramkumar, S. Prakash, B. Manikandan, J. Ravindran, P. K. Dhanalakshmi, E. Kannapiran, Biomed. Pharmacother. 84 (2016) 60‑70 (https://doi.org/10.1016/j.biopha.2016.09.004)

F. D. Koca, M. G. Halici, Y. Işik, G. Ünal, Inorg. Nano-Met. Chem. (2022) 1‑8 (https://doi.org/10.1080/24701556.2022.2078351)

A. K. Shukla, S. Iravani, Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier, Amsterdam, Netherlands, 2019 (https://doi.org/10.1016/C2017-0-02526-0)

M. Balouiri, M. Sadiki, S. K. Ibnsouda, J. Pharm. Anal. 6 (2016) 71‑79 (https://doi.org/10.1016/j.jpha.2015.11.005)

M. Abou-Dobara, M. Mousa, M. Hasaneen, S. Nabih, J. Agric. Chem. Biotech. 9(12) (2018) 283‑287 (https://doi.org/10.21608/jacb.2018.37039)

S. Jabeen, R. Qureshi, M. Munazir, M. Maqsood, M. Munir, S. H. Shah, B. Z. Rahim, Mater. Res. Express 8 (2021) 092001 (https://doi.org/10.1088/2053-1591/ac1de3)

I. Khan, K. Saeed, I. Khan, Arab. J. Chem. 12 (2019) 908‑931 (https://doi.org/10.1016/j.arabjc.2017.05.011)

N. Bano, D. Iqbal, A. Al Othaim, M. Kamal, H. M. Albadrani, N. A. Algehainy, Roohi, Sci. Rep. 13 (2023) 4150 (https://doi.org/10.1038/s41598-023-30215-9)

K. Kamala, G. J. J. Kumar, D. Ganapathy, A. K. Sundramoorthy, P. Sivaperumal, Curr. Anal. Chem. 19 (2023) 550‑560 (https://doi.org/10.2174/0115734110262574230927045451)

M. Asif, R. Yasmin, R. Asif, A. Ambreen, M. Mustafa, S. Umbreen, Dose-Response 20 (2022) 1-11 (https://doi.org/10.1177/15593258221088709)

S. Mourdikoudis, R. M. Pallares, N. T. Thanh, Nanoscale 10 (2018) 12871‑12934 (https://doi.org/10.1039/C8NR02278J)

T. Varadavenkatesan, R. Selvaraj, R. Vinayagam, Mater. Today: Proc. 23 (2020) 39‑42 (https://doi.org/10.1016/j.matpr.2019.05.441)

M. Awashra, P. Młynarz, Nanoscale Adv. 5 (2023) 2674‑2723 (https://doi.org/10.1039/D2NA00534D)

Z. Jia, J. Li, L. Gao, D. Yang, A. Kanaev, Colloids Interfaces 7 (2023) 1-18 (https://doi.org/10.3390/colloids7010015)

Z. Gharari, P. Hanachi, H. Sadeghinia, T. R. Walker, Pharmaceuticals 16 (2023) 1-20 (https://doi.org/10.3390/ph16070992)

M. H. Moosavy, M. Guardia, A. Mokhtarzadeh, S. A. Khatibi, N. Hosseinzadeh, N. Hajipour, Sci. Rep. 13 (2023) 7230 (https://doi.org/10.1038/s41598-023-33632-y)

N. Kizildag, S. Cenkseven, F. D. Koca, H. Aka Saglıker, C. Darici, Eur. J. Soil Biol. 91 (2019) 18‑24 (https://doi.org/10.1016/j.ejsobi.2019.01.001)

H. Fouad, G. Yang, A. A. El-Sayed, G. Mao, D. Khalafallah, M. Saad, H. Ga’al, E. Ibrahim, J. Mo, J. Nanobiotechnol. 19 (2021) 1-17 (https://doi.org/10.1186/s12951-021-01068-z)

I. A. M. Ali, A. B. Ahmed, H. I. Al-Ahmed, Sci. Rep. 13 (2023) 2256 (https://doi.org/10.1038/s41598-023-29412-3)

S. Korpayev, H. Hamrayev, N. Aničić, U. Gašić, G. Zengin, M. Agamyradov, G. Agamyradova, H. Rozyyev, G. Amanov, Biomass Convers. Biorefin. 14(19) (2024) 24715‑24729 (https://doi.org/10.1007/s13399-023-04648-1)

K. Kalwar, D. Shan, Micro Nano Lett. 13(3) (2018) 277‑280 (https://doi.org/10.1049/mnl.2017.0648)

M. K. Rasmussen, J. N. Pedersen, R. Marie, Nat. Commun. 11 (2020) 1-8 (https://doi.org/10.1038/s41467-020-15889-3)

P. R. More, S. Pandit, A. D. Filippis, G. Franci, I. Mijakovic, M. Galdiero, Microorganisms 11 (2023) 1-27 (https://doi.org/10.3390/microorganisms11020369)

A. Menichetti, A. Mavridi-Printezi, D. Mordini, M. Montalti, J. Funct. Biomater. 14 (2023) 1-21 (https://doi.org/10.3390/jfb14050244)

T. C. Dakal, A. Kumar, R. S. Majumdar, V. Yadav, Front. Microbiol. 7 (2016) 1-17 (https://doi.org/10.3389/fmicb.2016.01831)

A. Roy, O. Bulut, S. Some, A. K. Mandal, M. D. Yilmaz, RSC Adv. 9 (2019) 2673‑2702 (https://doi.org/10.1039/C8RA08982E)

Y. Shkryl, T. Rusapetova, Y. Yugay, A. Egorova, V. Silant’ev, V. Grigorchuk, A. Karabtsov, Y. Timofeeva, E. Vasyutkina, O. Kudinova, V. Ivanov, V. Kumeiko, V. Bulgakov, Int. J. Mol. Sci. 22(7) (2021) 9305 (https://doi.org/10.3390/ijms22179305)

X. Zhai, S. Shan, J. Wan, H. Tian, J. Wang, L. Xin, Neurotox. Res. 40(5) (2022) 1369-1379 (https://doi.org/10.1007/s12640-022-00570-y)

F. D. Koca, G. Ünal, M. G. Halici, J. Nano Res. 59 (2019) 15-24 (https://doi.org/10.4028/www.scientific.net/JNanoR.59.15)

M. I. Alkhalaf, R. H. Hussein, A. Hamza, Saudi J. Biol. Sci. 27 (2020) 2410‑2419 (https://doi.org/10.1016/j.sjbs.2020.05.005).