Synthesis and characterization of zeolite obtained from Toraja natural montmorillonite
Main Article Content
Abstract
Zeolites are an alternative material for treating heavy metal-containing waste. Synthetic zeolites exhibit excellent purity and particle size uniformity, which has led many researchers to explore their synthesis, including the use of natural minerals. This study aims to synthesize zeolites using the hydrothermal method with aluminosilicate sources from Toraja natural minerals. Toraja natural minerals, primarily composed of montmorillonite, hydrothermally react with NaOH at varying concentrations to form analcime (ANA) and cancrinite (CAN) zeolites. The research also examined the reaction time for zeolite formation. X-ray diffraction (XRD) analysis revealed that ANA and CAN exhibit tetragonal and hexagonal crystal structures, respectively. The Si/Al molar ratios were determined to be 2.40 for ANA and 1.27 for CAN, based on EDX analysis. The Fourier Transform Infrared (FTIR) spectra exhibit typical absorption bands within the spectral region of 700–400 cm⁻¹, with increasing intensity observed at higher NaOH concentrations. ANA zeolite displays distinctive spectral features below 650 cm⁻¹, attributed to double-ring vibrations in its structure. In contrast, triplet bands at 676, 622, and 565 cm⁻¹ in the synthesized materials confirm the characteristic structure of cancrinite. SEM analysis revealed trapezium-shaped analcime crystals with an average size of 24 µm and rod-shaped cancrinite crystals with a length of 1.66 µm. Toraja minerals, particularly montmorillonite, contain secondary building units that form different zeolites depending on reaction conditions.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Universitas Hasanuddin
Grant numbers No./01181UN4.1/KEP/2024
References
E. Kuldeyev, M. Seitzhanova, S. Tanirbergenova, K. Tazhu, E. Doszhanov, Z. Mansurov, S. Azat, R. Nurlybaev, R. Berndtsson, Water 15 (2023) 2215 (https://doi.org/10.3390/w15122215)
M. Hong, L. Yu, Y. Wang, J. Zhang, Z. Chen, L. Dong, Q. Zan, R. Li, Chem. Eng. J. 359 (2019) 363–372 (https://doi.org/10.1016/j.cej.2018.11.087)
N. Dhani, A. Gasruddin, H. Hartini, L. Baride, Civ. Eng. J. 7 (2021) 40–48 (https://doi.org/10.28991/cej-2021-03091635)
B. Jha, D. N. Singh, ChemInform 43 (2012) (http://dx.doi.org/10.1002/chin.201225227)
Y. D. Ngapa, S. Sugiarti, Z. Abidin, Indones. J. Chem. 16 (2018) 138 (https://doi.org/10.22146/ijc.21156)
S. Gu, J. Kang, T. Lee, J. Shim, J.-W. Choi, D. J. Suh, H. Lee, C. Yoo, H. Baik, J. Choi, J.-M. Ha, Chem. Eng. J. 457 (2023) 141057 (https://doi.org/10.1016/j.cej.2022.141057)
W. Kartawa, K. D. Kusumah, J. Geol. dan Sumberd. Miner. 16 (2006) 371–386 (https://jgsm.geologi.esdm.go.id/index.php/JGSM/article/view/377/330) (in Indonesian)
D. W. Kurniawidi, S. Alaa, S. Mulyani, S. Rahayu, ORBITA J. Pendidik. dan Ilmu Fis. 7 (2021) 313 (https://doi.org/10.31764/orbita.v7i2.6010) (in Indonesian)
G. Ke, H. Shen, P. Yang, Materials (Basel). 12 (2019) 3895 (https://doi.org/10.3390/ma12233895)
I. I. Amin, A. W. Wahab, R. R. Mukti, P. Taba, Appl. Nanosci. 13 (2023) 5389–5398 (https://doi.org/10.1007/s13204-022-02756-4)
D. Novembre, D. Gimeno, Sci. Rep. 11 (2021) 13373 (https://doi.org/10.1038/s41598-021-92862-0)
I. V. Joseph, L. Tosheva, G. Miller, A. M. Doyle, Materials (Basel) 14 (2021) 3738 (https://doi.org/10.3390/ma14133738)
L. Teng, X. Jin, Y. Bu, J. Ma, Q. Liu, J. Yang, W. Liu, L. Yao, J. Environ. Chem. Eng. 10 (2022) 108369 (https://doi.org/10.1016/j.jece.2022.108369)
H. Wu, X. Wang, W. Su, Vibroengineering Procedia 51 (2023) 114–120 (https://doi.org/10.21595/vp.2023.23545)
N. Sobuś, I. Czekaj, V. Diichuk, I. M. Kobasa, Tech. Trans. 117 (2020) 1–20 (https://doi.org/10.37705/TechTrans/e2020043)
R. Vigil de la Villa Mencía, E. Goiti, M. Ocejo, R. G. Giménez, Microporous Mesoporous Mater. 293 (2020) 109817 (https://doi.org/10.1016/j.micromeso.2019.109817)
M. Esaifan, L. N. Warr, G. Grathoff, T. Meyer, M.-T. Schafmeister, A. Kruth, H. Testrich, Minerals 9 (2019) 484 (https://doi.org/10.3390/min9080484)
M. Abdul-Moneim, A. A. Abdelmoneim, A. A. Geies, S. O. Farghaly, Assiut Univ. Bull. Environ. Res. 21.1 (2018) 23–40 (https://doi.org/10.21608/auber.2018.133200)
A. Z. Efendy, N. Herawati, A. Alimin, Chemica: Jurnal Ilmiah Kimia dan Pendidikan Kimia 17 (2016) (https://ojs.unm.ac.id/chemica/article/view/4568) (in Indonesian)
H. Liu, T. Shen, W. Wang, T. Li, Y. Yue, X. Bao, Appl. Clay Sci. 115 (2015) 201 (https://doi.org/10.1016/j.clay.2015.07.040)
M. Al Kausor, S. Sen Gupta, K. G. Bhattacharyya, D. Chakrabortty, Inorg. Chem. Commun. 143 (2022) 109686 (https://doi.org/10.1016/j.inoche.2022.109686)
Z. Danková, A. Mockovčiaková, S. Dolinská, Desalin. Water Treat. 52 (2014) 5462–5469 (https://doi.org/10.1080/19443994.2013.814006)
T. Chellapandi, G. Madhumitha, Mol. Divers. 26 (2022) 2311–2339 (https://doi.org/10.1007/s11030-021-10322-3)
X. Ma, J. Yang, H. Ma, C. Liu, P. Zhang, Microporous Mesoporous Mater. 201 (2015) 134–140 (https://doi.org/10.1016/j.micromeso.2014.09.019)
Y. Shen, P. Zhao, Q. Shao, Microporous Mesoporous Mater. 188 (2014) 46–76 (https://doi.org/10.1016/j.micromeso.2014.01.005)
E. Słaby, Acta Geol. Pol. 49 (1999) 25–65 (https://geojournals.pgi.gov.pl/agp/article/view/10126/8654)
S. Hansen, L. Fälth, Zeolites 2 (1982) 162–166 (https://doi.org/10.1016/S0144-2449(82)80046-8)
S. N. Azizi, S. Ghasemi, N. S. Gilani, Chinese J. Catal. 35 (2014) 383–390 https://doi.org/10.1016/S1872-2067(14)60002-4
P. G. G. Saha, Trans. Indian Ceram. Soc. 36 (1977) 99–123 (https://doi.org/10.1080/0371750X.1977.10840649)
S. M. Seo, D. Kim, D. Kim, J.-H. Kim, Y. J. Lee, K.-M. Roh, I.-M. Kang, J. Porous Mater. 25 (2018) 1561–1565 (https://doi.org/10.1007/s10934-018-0569-4)
A. G. Simakin, T. P. Salova, V. O. Zavel’skii, Geochemistry Int. 46 (2008) 622–626
F. A. C. M. Passos, D. C. Castro, K. K. Ferreira, K. M. A. Simões, L. C. Bertolino, C. N. Barbato, F. M. S. Garrido, A. A. S. Felix, F. A. N. G. Silva, Synthesis and Characterization of Sodalite and Cancrinite from Kaolin, in Miner. Met. Mater. Ser., 2017, pp. 279–288 (https://doi.org/10.1007/978-3-319-51382-9_31)
K. Rouchalová, D. Rouchalová, V. Čablík, D. Matýsek, Materials (Basel). 17 (2024) 269 (https://doi.org/10.3390/ma17010269)
T. Amaya, M. Shimojo, H. Fujihara, K. Yokoyama, MRS Online Proc. Lib. 556 (1999) 655 (https://doi.org/10.1557/PROC-556-655)
M. Osacký, H. Pálková, P. Hudec, A. Czímerová, D. Galusková, M. Vítková, Microporous Mesoporous Mater. 294 (2020) 20–23 (https://doi.org/10.1016/j.micromeso.2019.109852)
Q. Liu, A. Navrotsky, C. F. Jove-Colon, F. Bonhomme, Microporous Mesoporous Mater. 98 (2007) 227–233 (https://doi.org/10.1016/j.micromeso.2006.09.008)
V. Wernert, O. Schaef, L. Aloui, C. Chassigneux, F. Ayari, D. Ben Hassen Chehimi, R. Denoyel, Microporous Mesoporous Mater. 301 (2020) 110209 (https://doi.org/10.1016/j.micromeso.2020.110209)