Synthesis and characterization of zeolite obtained from Toraja natural montmorillonite Scientific paper

Main Article Content

Paulina Taba
https://orcid.org/0000-0001-7327-5505
St. Fauziah
https://orcid.org/0000-0002-0599-4011
Hasnah Natsir
Nunuk Hariani Soekamto
https://orcid.org/0000-0001-8281-1752
Rosalia Sira Sarungallo
https://orcid.org/0000-0002-6742-2246
Nur Wahyuni Nahru
https://orcid.org/0009-0005-3692-0137
Yuli Astuti
https://orcid.org/0009-0002-1111-4727
Ida Ifdaliah Amin
https://orcid.org/0000-0003-4695-6924

Abstract

Zeolites are an alternative material for treating heavy metal-con­taining waste. Synthetic zeolites exhibit excellent purity and particle size uni­formity, which has led many researchers to explore their synthesis, including the use of natural minerals. This work aims to synthesize zeolites using the hydrothermal method with aluminosilicate sources from Toraja natural min­erals. Toraja natural minerals, primarily composed of montmorillonite, hydro­ther­mally react with NaOH at varying concentrations to form analcime (ANA) and cancrinite (CAN) zeolites. In the research we also examined the reaction time for zeolite formation. X-ray diffraction (XRD) analysis revealed that ANA and CAN exhibit tetragonal and hexagonal crystal structures, respectively. The Si/Al mole ratios were determined to be 2.40 for ANA and 1.27 for CAN, based on EDX analysis. The Fourier transform infrared (FTIR) spectra exhibit typical absorption bands within the spectral region of 700–400 cm-1, with increasing intensity observed at higher NaOH concentrations. ANA zeolite dis­plays distinctive spectral features below 650 cm-1, attributed to double-ring vibrations in its structure. In contrast, triplet bands at 676, 622 and 565 cm-1 in the synthesized materials confirm the characteristic structure of cancrinite. SEM analysis revealed trapezium-shaped analcime crystals with an average size of 24 µm and rod-shaped cancrinite crystals with a length of 1.66 µm. Toraja minerals, particularly montmorillonite, contain secondary building units that form different zeolites depending on reaction conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
P. Taba, “Synthesis and characterization of zeolite obtained from Toraja natural montmorillonite: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 6, pp. 753–766, Jun. 2025.
Section
Physical Chemistry
Author Biographies

St. Fauziah, Department of Chemistry, Faculty of Science, Hasanuddin University, Indonesia

Department of Chemistry, Faculty of Science, Hasanuddin University, Indonesia

Associate Professor in Chemistry department, Physical Chemistry division

Hasnah Natsir, Department of Chemistry, Faculty of Science, Hasanuddin University, Indonesia

Professor in Chemistry Department, Biochemistry division

Nunuk Hariani Soekamto, Department of Chemistry, Faculty of Science, Hasanuddin University, Indonesia

Professor in Chemistry Department, Organic Chemistry division

Rosalia Sira Sarungallo, Chemical Engineering, Kristen Indonesia Paulus Makassar University, Indonesia

Lecturer in chemical Engineering, Kristen Indonesia Paulus Makassar University

Nur Wahyuni Nahru, Department of Chemistry, Faculty of Science, Hasanuddin University, Indonesia

Masters student in Chemistry Department, Faculty of Science, Hasanuddin University

Yuli Astuti, Department of Chemistry, Faculty of Science, Hasanuddin University, Indonesia

Masters student in Chemistry Department, Faculty of Science, Hasanuddin University

Funding data

References

E. Kuldeyev, M. Seitzhanova, S. Tanirbergenova, K. Tazhu, E. Doszhanov, Z. Mansurov, S. Azat, R. Nurlybaev, R. Berndtsson, Water 15 (2023) 2215 (https://doi.org/10.3390/w15122215)

M. Hong, L. Yu, Y. Wang, J. Zhang, Z. Chen, L. Dong, Q. Zan, R. Li, Chem. Eng. J. 359 (2019) 363 (https://doi.org/10.1016/j.cej.2018.11.087)

N. Dhani, A. Gasruddin, H. Hartini, L. Baride, Civ. Eng. J. 7 (2021) 40 (https://doi.org/10.28991/cej-2021-03091635)

B. Jha, D. N. Singh, ChemInform 43 (2012) (http://dx.doi.org/10.1002/chin.201225227)

Y. D. Ngapa, S. Sugiarti, Z. Abidin, Indones. J. Chem. 16 (2018) 138 (https://doi.org/10.22146/ijc.21156)

S. Gu, J. Kang, T. Lee, J. Shim, J.-W. Choi, D. J. Suh, H. Lee, C. Yoo, H. Baik, J. Choi, J.-M. Ha, Chem. Eng. J. 457 (2023) 141057 (https://doi.org/10.1016/j.cej.2022.141057)

W. Kartawa, K. D. Kusumah, J. Geol. dan Sumberd. Miner. 16 (2006) 371 (https://jgsm.geologi.esdm.go.id/index.php/JGSM/article/view/377/330) (in Indonesian)

D. W. Kurniawidi, S. Alaa, S. Mulyani, S. Rahayu, ORBITA J. Pendidik. dan Ilmu Fis. 7 (2021) 313 (https://doi.org/10.31764/orbita.v7i2.6010) (in Indonesian)

G. Ke, H. Shen, P. Yang, Materials (Basel) 12 (2019) 3895 (https://doi.org/10.3390/ma12233895)

I. I. Amin, A. W. Wahab, R. R. Mukti, P. Taba, Appl. Nanosci. 13 (2023) 5389 (https://doi.org/10.1007/s13204-022-02756-4)

D. Novembre, D. Gimeno, Sci. Rep. 11 (2021) 13373 (https://doi.org/10.1038/s41598-021-92862-0)

I. V. Joseph, L. Tosheva, G. Miller, A. M. Doyle, Materials (Basel) 14 (2021) 3738 (https://doi.org/10.3390/ma14133738)

L. Teng, X. Jin, Y. Bu, J. Ma, Q. Liu, J. Yang, W. Liu, L. Yao, J. Environ. Chem. Eng. 10 (2022) 108369 (https://doi.org/10.1016/j.jece.2022.108369)

H. Wu, X. Wang, W. Su, Vibroeng. Proc. 51 (2023) 114 (https://doi.org/10.21595/vp.2023.23545)

N. Sobuś, I. Czekaj, V. Diichuk, I. M. Kobasa, Tech. Trans. 117 (2020) 1 (https://doi.org/10.37705/TechTrans/e2020043)

R. Vigil de la Villa Mencía, E. Goiti, M. Ocejo, R. G. Giménez, Microporous Mesoporous Mater. 293 (2020) 109817 (https://doi.org/10.1016/j.micromeso.2019.109817)

M. Esaifan, L. N. Warr, G. Grathoff, T. Meyer, M.-T. Schafmeister, A. Kruth, H. Testrich, Minerals 9 (2019) 484 (https://doi.org/10.3390/min9080484)

M. Abdul-Moneim, A. A. Abdelmoneim, A. A. Geies, S. O. Farghaly, Assiut Univ. Bull. Environ. Res. 21.1 (2018) 23 (https://doi.org/10.21608/auber.2018.133200)

A. Z. Efendy, N. Herawati, A. Alimin, Chemica: Jurnal Ilmiah Kimia dan Pendidikan Kimia 17 (2016) (https://ojs.unm.ac.id/chemica/article/view/4568) (in Indonesian)

H. Liu, T. Shen, W. Wang, T. Li, Y. Yue, X. Bao, Appl. Clay Sci. 115 (2015) 201 (https://doi.org/10.1016/j.clay.2015.07.040)

M. Al Kausor, S. Sen Gupta, K. G. Bhattacharyya, D. Chakrabortty, Inorg. Chem. Commun. 143 (2022) 109686 (https://doi.org/10.1016/j.inoche.2022.109686)

Z. Danková, A. Mockovčiaková, S. Dolinská, Desalin. Water Treat. 52 (2014) 5462 (https://doi.org/10.1080/19443994.2013.814006)

T. Chellapandi, G. Madhumitha, Mol. Divers. 26 (2022) 2311 (https://doi.org/10.1007/s11030-021-10322-3)

X. Ma, J. Yang, H. Ma, C. Liu, P. Zhang, Microporous Mesoporous Mater. 201 (2015) 134 (https://doi.org/10.1016/j.micromeso.2014.09.019)

Y. Shen, P. Zhao, Q. Shao, Microporous Mesoporous Mater. 188 (2014) 46 (https://doi.org/10.1016/j.micromeso.2014.01.005)

E. Słaby, Acta Geol. Pol. 49 (1999) 25 (https://geojournals.pgi.gov.pl/agp/article/view/10126/8654)

S. Hansen, L. Fälth, Zeolites 2 (1982) 162 (https://doi.org/10.1016/S0144-2449(82)80046-8)

S. N. Azizi, S. Ghasemi, N. S. Gilani, Chin. J. Catal. 35 (2014) 383 https://doi.org/10.1016/S1872-2067(14)60002-4

P. G. G. Saha, Trans. Indian Ceram. Soc. 36 (1977) 99 (https://doi.org/10.1080/0371750X.1977.10840649)

S. M. Seo, D. Kim, D. Kim, J.-H. Kim, Y. J. Lee, K.-M. Roh, I.-M. Kang, J. Porous Mater. 25 (2018) 1561 (https://doi.org/10.1007/s10934-018-0569-4)

A. G. Simakin, T. P. Salova, V. O. Zavel’skii, Geochemistry Int. 46 (2008) 622

F. A. C. M. Passos, D. C. Castro, K. K. Ferreira, K. M. A. Simões, L. C. Bertolino, C. N. Barbato, F. M. S. Garrido, A. A. S. Felix, F. A. N. G. Silva, in Characterization of Minerals, Metals, and Materials 2017, Conference proceedings, Springer, Cham, 2017, pp. 279–288 (https://doi.org/10.1007/978-3-319-51382-9_31)

K. Rouchalová, D. Rouchalová, V. Čablík, D. Matýsek, Materials (Basel) 17 (2024) 269 (https://doi.org/10.3390/ma17010269)

T. Amaya, M. Shimojo, H. Fujihara, K. Yokoyama, MRS Online Proc. Lib. 556 (1999) 655 (https://doi.org/10.1557/PROC-556-655)

M. Osacký, H. Pálková, P. Hudec, A. Czímerová, D. Galusková, M. Vítková, Microporous Mesoporous Mater. 294 (2020) 20 (https://doi.org/10.1016/j.micromeso.2019.109852)

Q. Liu, A. Navrotsky, C. F. Jove-Colon, F. Bonhomme, Microporous Mesoporous Mater. 98 (2007) 227 (https://doi.org/10.1016/j.micromeso.2006.09.008)

V. Wernert, O. Schaef, L. Aloui, C. Chassigneux, F. Ayari, D. Ben Hassen Chehimi, R. Denoyel, Microporous Mesoporous Mater. 301 (2020) 110209 (https://doi.org/10.1016/j.micromeso.2020.110209).