Acetic acid liquid-liquid extraction and UHPLC-DAD detection of polycyclic aromatic hydrocarbons in toasted and fried foods

Main Article Content

Chen Son Yue
https://orcid.org/0000-0002-2108-8254
Chui Fung Loke
https://orcid.org/0000-0003-2268-9139
Siew Hong Lai
Han Hong Teo
Sarah Ilangovan
Keh Niang Chee

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a large class of organic compounds containing two or more fused aromatic rings. They have very low water solubility and are highly lipophilic. Acetic acid is a polar protic solvent that is often used in reactions involving carbocation intermediates. In this study, acetic acid, coupled with other organic solvents, was optimized and used for the extraction of eleven PAHs in two types of foods: toasted and fried. The UHPLC-DAD method, coupled with a C18 column, was validated and applied to analyze eleven PAHs in the food samples. The LOD and LOQ values obtained ranged from 0.0049 to 0.373 μg L⁻¹. The recoveries of the PAHs ranged from 47.3% to 119.7%. The analysis results show that light PAHs were commonly found in both types of food. Some fried foods are highly carcinogenic due to the presence of BaP and Group 2B PAHs. Generally, toasted foods are safe to consume.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
C. S. Yue, C. F. . Loke, S. H. Lai, H. H. . Teo, S. . Ilangovan, and K. N. . Chee, “Acetic acid liquid-liquid extraction and UHPLC-DAD detection of polycyclic aromatic hydrocarbons in toasted and fried foods”, J. Serb. Chem. Soc., Mar. 2025.
Section
Analytical Chemistry

References

A. Onopiuk, K. Kołodziejczak, M. Marcinkowska-Lesiak, A. Poltorak, Food Chem. 373 (2022) 131506 (https://doi.org/10.1016/j.foodchem.2021.131506)

A. Zachara, D. Gałkowska, L. Juszczak, Int. J. Environ. Res. Public Health 15 (2017) 45 (https://doi.org/10.3390/ijerph15010045)

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, “IARC monographs on the evaluation of carcinogenic risks to humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. ,” vol. 92. IARC Monographs on Evaluation on Carcinogenic Risks to Humans, (2010) p. 773

European Communities, “Amending Regulation (EC) no 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in food stuffs,” Commission Regulation (EC) no 835/2011.

Commission Recommendation, (2005, February 4). “Further investigation into the levels of polycyclic aromatic hydrocarbons in certain foods,” Official Journal of the European Union.

L. K. Tintrop, A. Salemi, M. A. Jochmann, W. R. Engewald, T. C. Schmidt, Anal. Chim. Acta 1271 (2023) 341468 (https://doi.org/10.1016/j.aca.2023.341468)

H. V. Chuyen, M. H. Nguyen, P. D. Roach, J. B. Golding, S. E. Parks, Food Sci. Nutr. 6 (2018) 189–196 (https://doi.org/10.1002/fsn3.546)

C. S. Yue, A. K. Lim, M. L. Chia, P. Y. Wong, J. S. R. Chin, W. H. Wong, J. Food Sci. 88 (2023) 650–665 (https://doi.org/10.1111/1750-3841.16404)

V. Jalili, A. Barkhordari, A. Ghiasvand, Rev. Anal. Chem. 39 (2020) 1–19 (https://doi.org/10.1515/revac-2020-0101)

E. N. Hamidi, P. Hajeb, J. Selamat, S. Y. Lee, A. F. Abdull Razis, Int. J. Environ. Res. Public Health 19 (2022) 736 (https://doi.org/10.3390/ijerph19020736)

F. Cheng, B. Wang, Y. Xia, Int. J. Polym. Sci. 2018 (2018) 1–8 (https://doi.org/10.1155/2018/4960416)

T. O. A. Sturzoiu. T. Dobre, UPB Sci Bull B: Chem. Mater. Sci. 68 (2006) 39–54

R. J. Ouellette and J. D. Rawn, Principles of Organic Chemistry, 1st edition. Elsevier (2015)

P. Demmelmayer, L. Steiner, H. Weber, M. Kienberger, Sep. Purif. Technol. 310 (2023) 123060 (https://doi.org/10.1016/j.seppur.2022.123060)

M. J. Zarrinmehr, E. Daneshvar, S. Nigam, K. Panchamoorthy Gopinath, J. Kumar Biswas, E. E. Kwon, H. Wang, O. Farhadian, A. Bhatnagar, Bioresour. Technol. 344 (2022) 126303 (https://doi.org/10.1016/j.biortech.2021.126303)

J. O. Chaves, M. Corrêa de Souza, L. Capelasso da Silva, D. Lachos-Perez, P. C. Torres-Mayanga, A. P. da Fonseca Machado, T. Forster-Carneiro, M, Vázquez-Espinosa, A. Velasco González-de-Peredo, G. Fernández Barbero, M. Ariel Rostagno, Front. Chem. 8 (2020) 507887 (https://doi.org/10.3389/fchem.2020.507887)

M. Mahmoudpour, J. Mohtadinia, M.-M. Mousavi, M. Ansarin, M. Nemati, Food Anal. Methods 10 (2017) 277–286 (https://doi.org/10.1007/s12161-016-0579-2)

J. L. Navarro, M. Moiraghi, F. M. Quiroga, A. E. León, M. E. Steffolani, Food Technol. Biotechnol. 58 (2020) (https://doi.org/10.17113/ftb.58.03.20.6766)

H. Badibostan, J. Feizy, B. Daraei, S. Shoeibi, S. H. Rajabnejad, J. Asili, S. F. Taghizadeh, J. P. Giesy, G. Karimi, Food Chem. Toxicol. 131 (2019) 110640 (https://doi.org/10.1016/j.fct.2019.110640)

C. S. Yue, Q. N. Ng, A. K. Lim, M. H. Lam, K. N. Chee, Int. Food Res. J. 26 (2019) 999–1009 (http://www.ifrj.upm.edu.my/26%20(03)%202019/30%20-%20IFRJ18644.R1-Final.pdf)

J. Cheng, J. Wang, F. Chen, D. Wu, C. Gao, W. Cheng, Z. Wang, X. Shen, X. Tang, Food Chem. 412 (2023) 135595 (https://doi.org/10.1016/j.foodchem.2023.135595)

C. P. Chong, H. Haron, S. Shahar, M. F. Md Noh, J. Food Compos. Anal. 80 (2019) 1–9 (https://doi.org/10.1016/j.jfca.2019.03.017)