Kinetic and equilibrium comparison of methylene blue and basic blue 41 adsorption by silica fume Scientific paper
Main Article Content
Abstract
The complex molecular structures of synthetic dyes are not easily removed from water, so it is essential to treat dye pollutants before they enter the aquatic environments. In this study, cost-effective industrial waste silica fume (SF) was used as an adsorbent to investigate the adsorption of methylene blue (MB) and basic blue 41 (BB-41). The structure of the silica fume adsorbent was characterized using the FESEM technique, which confirmed that SF has a porous structure. The adsorption of these cationic dyes was examined using kinetics models (pseudo-first-order and pseudo-second-order) and isotherm models (Langmuir, Temkin, Dubinin–Radushkevich and Freundlich), and the results obtained were compared. Based on the findings, the adsorption process of MB and BB-41 on SF followed pseudo-second-order kinetics. The adsorption of MB and BB-41 on SF followed Freundlich isotherm model. According to Langmuir isotherm data, the maximum adsorption capacity for BB-41 and MB was found to be 41.95 and 189.31 mg/g, respectively.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
C. Osagie, A. Othmani, S. Ghosh, A. Malloum, Z. Kashitarash Esfahani, S. Ahmadi, J. Mater. Res. Technol. 14 (2021) 2195 (https://doi.org/10.1016/j.jmrt.2021.07.085)
P. O. Oladoye, T. O. Ajiboye, E. O. Omotola, O. J. Oyewola, Results Eng. 16 (2022) 100678 (https://doi.org/10.1016/j.rineng.2022.100678)
S. T. Al-Asadi, F. F. Al-Qaim, Research Square 1 (2023) 1 (https://doi.org/10.21203/rs.3.rs-2449414/v1)
İ. Şentürk, M. Alzein, Sustain. Chem. Pharm. 16 (2020) 100254 (https://doi.org/10.1016/j.scp.2020.100254)
Y. Wang, M. Chen, C. Wang, X. Meng, W. Zhang, Z. Chen, J. Crittenden, Chem. Eng. J. 374 (2019) 626 (https://doi.org/10.1016/j.cej.2019.05.217)
S. Yu, H. Pang, S. Huang, H. Tang, S. Wang, M. Qiu, Z. Chen, H. Yang, G. Song, D. Fu, Sci. Total Environ. 800 (2021) 149662 (https://doi.org/10.1016/j.scitotenv.2021.149662)
A. Ashraf, J. Dutta, A. Farooq, M. Rafatullah, K. Pal, G. Z. Kyzas, J. Mol. Struct. 1309 (2024) 138225 (https://doi.org/10.1016/j.molstruc.2024.138225)
H. Bensalah, S. A. Younssi, M. Ouammou, A. Gurlo, M. F. Bekheet, J. Environ. Chem. Eng. 8 (2020) 103807 (https://doi.org/10.1016/j.jece.2020.103807)
R. H. Hailemariam, Y. C. Woo, M. M. Damtie, B. C. Kim, K.-D. Park, J.-S. Choi, Adv. Colloid Interf. Sci. 276 (2020) 102100 (https://doi.org/10.1016/j.cis.2019.102100)
C. F. Couto, A. V. Santos, M. C. S. Amaral, L. C. Lange, L. H. De Andrade, A. F. S. Foureaux, B. S. Fernandes, J. Water Proc. Eng. 33 (2020) 101029 (https://doi.org/10.1016/j.jwpe.2019.101029)
S. Mortazavi, E. Najafi Kani. J. Turkish Chem. Soc., B 6 (2023) 35 (https://doi.org/10.58692/jotcsb.1240859)
D. Ramutshatsha-Makhwedzha, A. Mavhungu, M. L. Moropeng, R. Mbaya, Heliyon 8 (2022) e09930 (https://doi.org/10.1016/j.heliyon.2022.e09930)
A. K. Prajapati, M. K. Monda, J. Mol. Liq. 307 (2020) 112949 (https://doi.org/10.1016/j.molliq.2020.112949)
M. Wakkel, B. Khiari, F. Zagrouba. J. Taiwan Ins. Chem. Eng. 96 (2019) 439 (https://doi.org/10.1016/j.jtice.2018.12.014)
R. Wu, A. H. Jawad, E. Kashi, S. A. Musa, Z. A. Alothman, J. Polym. Environ. 32 (2024) 6390 (https://doi.org/10.1007/s10924-024-03388-1)
I. Loulidi, F. Boukhlifi, M. Ouchabi, A. Amar, M. Jabri, A. Kali, S. Chraibi, C. Hadey, F. Aziz, Sci. World J. 2020 (2020) 5873521 (https://doi.org/10.1155/2020/5873521)
M. K. Uddin, A. Nasar, Sci. Rep. 10 (2020) 7983 (https://doi.org/10.1038/s41598-020-64745-3)
S. Rajoriya, V. K. Saharan, A. S. Pundir, M. Nigam, K. Roy, Cur. Res. Green Sust. Chem. 4 (2021) 100180 (https://doi.org/10.1016/j.crgsc.2021.100180)
M. S. Manzar, G. Khan, P. V. Dos Santos Lins, M. Zubair, S. U. Khan, R. Selvasembian, L. Meili, N. I. Blaisi, M. Nawaz, H. A. Aziz, T. S. Kayed, J. Mol. Liq. 339 (2021) 116714 (https://doi.org/10.1016/j.molliq.2021.116714)
M. Benjelloun, Y. Miyah, G. A. Evrendilek, F. Zerrouq, S. Lairini, Arabian J. Chem. 14 (2021) 103031 (https://doi.org/10.1016/j.arabjc.2021.103031)
H. Bensalah, S. A. Younssi, M. Ouammou, A. Gurlo, M. F. Bekheet, J. Environ. Chem. Eng. 8 (2020) 103807 (https://doi.org/10.1016/j.jece.2020.103807)
J. Benvenuti, A. Fisch, J. H. Z. Dos Santos, M. Gutterres, J. Environ. Chem. Eng. 7 (2019) 103342 (https://doi.org/10.1016/j.jece.2019.103342)
K. Y. Foo, B. H. Hameed, Chem. Eng. J. 156 (2010) 2 (https://doi.org/10.1016/j.cej.2009.09.013)
A. Sarı, Ç. Demirhan, M. Tuzen, Chem. Eng. J. 162 (2010) 521 (https://doi.org/10.1016/j.cej.2010.05.054)
M. A. Al-Ghouti, D. A. Da'ana, J Hazard. Mater. 393 (2020) 122383 (https://doi.org/10.1016/j.jhazmat.2020.122383)
M. M. Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, M. Sillanpää, Sci. Total Environ. 812 (2022) 151334 (https://doi.org/10.1016/j.scitotenv.2021.151334)
B. S. Rathi, P. S. Kumar, Environ. Pollut. 280 (2021) 116995 (https://doi.org/10.1016/j.envpol.2021.116995)
S. Mortazavi, M. Sillanpaa, D. Bose. Int. J. Environ. Anal. Chem. (2024) (https://doi.org/10.1080/03067319.2024.2426003)
A. Bosacka, M. Zienkiewicz-Strzalka, A. Derylo-Marczewska, A. Chrzanowska, M. Blachnio, B. Podkoscielna, Front. Chem. 11 (2023) 1176718 (https://doi.org/10.3389/fchem.2023.1176718).