Optimization of deep eutectic solvent based liquid phase microextraction of PAHs in environmental samples using response surface methodology Scientific paper
Main Article Content
Abstract
The presence of polycyclic aromatic hydrocarbons (PAHs) in wastewater poses significant health risks. To address this, a novel deep eutectic solvent-based ferrofluid (DES-ferrofluid) was developed for liquid phase microextraction with back extraction (LPME-BE) to detect PAHs. The DES-ferrofluid was characterised for its physicochemical properties and morphology using FTIR, VSM, and SEM-EDX. Key parameters in the LPME-BE process were optimised using response surface methodology (RSM) based on a Box-Behnken design (BBD). Optimal conditions included 15 mg of tetraethyl orthosilicate-coated magnetic nanoparticles (MNPTEOS), 25 µL of DES 1 (caprylic acid and lauric acid), 800 mg NaCl, and a 10 min extraction time. Analysis of variance (ANOVA) confirmed strong alignment between experimental data and the model, with an R² of 0.8799 and adj. R² of 0.7395. The method achieved limits of detection (LODs) of 0.4–1.7 ng mL⁻¹ and limits of quantification (LOQs) of 1.33–5.67 ng mL⁻¹. Recoveries for spiked samples ranged from 75.78 to 118.65%, with RSD < 15%. This DES-ferrofluid LPME-BE method with BBD optimisation shows promise as an effective alternative for PAH detection in wastewater samples.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2018/STG01/USM/03/1
References
N. Manousi, E. Rosenberg, E. Deliyanni, G. A. Zachariadis, V. Samanidou, Molecules 25 (2020) 1148 (https://doi.org/10.3390/molecules25051148)
M. A. Farajzadeh, M. R. Afshar Mogaddam, M. Aghanassab, Anal. Methods 8 (2016) 2576–2583 (https://doi.org/10.1039/c5ay03189c)
L. Foan, F. Ricoul, S. Vignoud, Int. J. Environ. Anal. Chem. 95 (2015) 1171–1185 (https://doi.org/10.1080/03067319.2014.994617)
A. Jouyban, M. A. Farajzadeh, M. Nemati, A. A. Alizadeh Nabil, M. R. Afshar Mogaddam, Microchem. J. 154 (2020) 104631 (https://doi.org/10.1016/j.microc.2020.104631)
N. N. Naing, S. F. Yau Li, H. K. Lee, J. Chromatogr. A 1440 (2016) 23–30 (https://doi.org/10.1016/j.chroma.2016.02.046)
S. K. Mahmad Rozi, S. Bakhshaei, N. S. Abdul Manan, S. Mohamad, RSC Adv. 6 (2016) 87719–87729 (https://doi.org/10.1039/c6ra15319d)
M. Carabajal, C. M. Teglia, S. Cerutti, M. J. Culzoni, H.C. Goicoechea, Microchem. J. 152 (2020) 104436 (https://doi.org/10.1016/j.microc.2019.104436)
J. S. da S. Burato, D. A. V. Medina, A. L. de Toffoli, E. V. S. Maciel, F. M. Mauro Lanças, J. Sep. Sci. 43 (2020) 202–225 (https://doi.org/10.1002/jssc.201900776)
P. Makoś, E. Słupek, J. Gębicki, Microchem. J. 152 (2020) 104384 (https://doi.org/10.1016/j.microc.2019.104384)
C. Florindo, L. Romero, I. Rintoul, L. C. Branco, I. M. Marrucho, ACS Sustain. Chem. Eng. 6 (2018) 3888–3895 (https://doi.org/10.1021/acssuschemeng.7b04235)
E. A. Dil, M. Ghaedi, A. Asfaram, Talanta 202 (2019) 526–530 (https://doi.org/10.1016/j.talanta.2019.05.027)
A. Jouyban, M. A. Farajzadeh, M. R. Afshar Mogaddam, M. Nemati, A. A. Alizadeh Nabil, Anal. Methods 12 (2020) 1522–1531 (https://doi.org/10.1039/d0ay00073f)
E. A. Dil, M. Ghaedi, A. Asfaram, L. Tayebi, F. Mehrabi, J. Chromatogr. A 1613 (2020) 460695 (https://dx.doi.org/10.1016/j.chroma.2019.460695)
A. R. Zarei, M. Nedaei, S. A. Ghorbanian, J. Chromatogr. A 1553 (2018) 32–42 (https://dx.doi.org/10.1016/j.chroma.2018.04.023)
M. A. Farajzadeh, A. Mohebbi, M. Reza, A. Mogaddam, J. Sep. Sci. 43 (2020) 1119–1127 (https://dx.doi.org/10.1002/jssc.201901000)
C. Fan, X. Cao, T. Han, H. Pei, G. Hu, W. Wang, C. Qian, Microchim. Acta 186 (2019) 560 (https://dx.doi.org/10.1007/s00604-019-3651-y)
M. P. Abarbakouh, H. Faraji, H. Shahbaazi, M. Miralinaghi, J. Mol. Liq. 399 (2024) 124421 (https://dx.doi.org/10.1016/j.molliq.2024.124421)
S. Morovati, K. Larijani, M. Helalizadeh, L. G. Mohammadkhani, H. Faraji, J. Chromatogr. A 1712 (2023) 464468 (https://dx.doi.org/10.1016/j.chroma.2023.464468)
S. R. Chaudhari, A. A. Shirkhedkar, J. Anal. Sci. Technol. 11 (2020) 48 (https://doi.org/10.1186/s40543-020-00246-2)
A. Czyrski, J. Sznura, Sci. Rep. 9 (2019) 19458 (https://doi.org/10.1038/s41598-019-55761-z)
J. S. Cvetkovic, V. D. Mitic, V. P. Stankov Jovanovic, M. V Dimitrijevic, G. M. Petrovic, S. D. Nikolic-Mandic,G. S. Stojanovic, Anal. Methods 8 (2016) 1711–1720 (https://doi.org/10.1039/C5AY03248B)
B. Yih Hui, N. N. Mohamad Zain, S. Mohamad, P. Varanusupakul, H. Osman, M. Raoov, Food Chem. 314 (2020) 126214 (https://doi.org/10.1016/j.foodchem.2020.126214)
B. Maddah, M. Soltaninezhad, K. Adib, Sep. Sci. Technol. 52 (2017) 700–711 (https://doi.org/10.1080/01496395.2016.1221432)
V. W. O. Wanjeri, S. Gbashi, J. C. Ngila, P. Njobeh, M. A. Mamo, P. G. Ndungu, Int. J. Anal. Chem. 2019 (2019) 4564709 (https://doi.org/10.1155/2019/4564709)
P. Zohrabi, M. Shamsipur, M. Hashemi, B. Hashemi, Talanta 160 (2016) 340–346 (https://doi.org/10.1016/j.talanta.2016.07.036)
M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, L. A. Escaleira, Talanta 76 (2008) 965–977 (https://doi.org/10.1016/j.talanta.2008.05.019)
M. Kumari, S. K. Gupta, Sci. Rep. 9 (2019) 18339 (https://doi.org/10.1038/s41598-019-54902-8)
S. N. Azizi, N. Asemi, J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 47 (2012) 692–699 (https://doi.org/10.1080/03601234.2012.669260)
L. I. Abd Ali, W. A. Wan Ibrahim, A. Sulaiman, M. A. Kamboh, M. M. Sanagi, Talanta 148 (2015) 191–199 (https://doi.org/10.1016/j.talanta.2015.10.062)
N. H. Sazali, M. Miskam, F. B. M. Suah, N. Y. Rahim, Int. J. Environ. Anal. Chem. 104 (2022) 2465–2484 (https://doi.org/10.1080/03067319.2022.2062570)
SANTE/11945/2015: Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed (2017)
M. Imran, A. R. Ansari, A. H. Shaik, Abdulaziz, S. Hussain, A. Khan, M. R. Chandan, Mater. Res. Express 5 (2018) 036108 (https://doi.org/10.1088/2053-1591/aab4d7)
S. Bandgar, J. Dhumal, S. Bandgar, K. Zipare, G. Shahane, Int. J. Mater. Chem. Phys. 1 (2015) 141–145 (http://www.aiscience.org/journal/paperInfo/ijmcp?paperId=1819)
K. Zhang, C. Liu, S. Li, Y. Wang, G. Zhu, J. Fan, Anal. Lett. 53 (2020) 1204–1217 (https://doi.org/10.1080/00032719.2019.1700422)
J. Jayabharathi, P. Ramanathan, V. Thanikachalam, C. Karunakaran, New J. Chem. 39 (2015) 3801–3812 (https://doi.org/10.1039/c4nj02068e)
Y. Hadadian, H. Masoomi, A. Dinari, C. Ryu, S. Hwang, S. Kim, B. K. Cho, J. Y. Lee, J. Yoon, ACS Omega 7 (2022) 15996 (https://doi.org/10.1021/acsomega.2c01136)
R. Lenin, A. Dadwal, P. A. Joy, Bull. Mater. Sci. 41 (2018) 120 (https://doi.org/10.1007/s12034-018-1638-7)
S. M. Majidi, M. R. Hadjmohammadi, Talanta 222 (2021) 121649 (https://doi.org/10.1016/j.talanta.2020.121649)
A. García, E. Rodríguez-Juan, G. Rodríguez-Gutiérrez, J. J. Rios, J. Fernández-Bolaños, Food Chem. 197 (2016) 554–561 (https://dx.doi.org/10.1016/j.foodchem.2015.10.131)
N. R. Rodriguez, P. F. Requejo, M. C. Kroon, Ind. Eng. Chem. Res. 54 (2015) 11404–11412 (https://dx.doi.org/10.1021/acs.iecr.5b02611)
Y. An, W. Ma, K. H. Row, Anal. Lett. 53 (2020) 262–272 (https://doi.org/10.1080/00032719.2019.1646754)
M. Shirani, B. Akbari-adergani, M. B. Jazi, A. Akbari, Microchim. Acta 186 (2019) 674 (https://doi.org/10.1007/s00604-019-3763-4)
E. F. Elkady, M. A. Fouad, A. N. Mozayad, BMC Chem. 16 (2022) 1–15 (https://dx.doi.org/10.1186/s13065-022-00908-9)
A. Drolc, P. Djinović, A. Pintar, Accredit. Qual. Assur. 18 (2013) 225–233 (https://dx.doi.org/10.1007/s00769-013-0980-0)
V. J. Barwick, J. Chromatogr. A 849 (1999) 13–33 (https://dx.doi.org/10.1016/S0021-9673(99)00537-3).