Ruthenium(III)-monosubstituted Keggin-type polyoxotungstate: Synthesis, characterization and application in the catalytic methanation of carbon dioxide Scientific paper
Main Article Content
Abstract
Cs5[α-SiW11O39RuIII(H2O)]×8H2O heteropolysalt with a Keggin structure was successfully synthesized, and its physicochemical characteristics were determined via X-ray diffraction, UV‒Vis spectroscopy, Fourier-transform infrared and Brunauer, Emmett and Teller surface area measurements. The acid‒base properties were evaluated via isopropanol decomposition. The catalytic performance for the CO2 methanation reaction was evaluated in a fixed-bed reactor at atmospheric pressure by varying the process parameters, which included the reaction temperature (200–450 °C), reactant mole ratio H2/CO2 (1, 2 and 4) and flow rate (1, 1.5 and 2 L/h). The experimental results showed that
Cs5[α-SiW11O39RuIII(H2O)]×8H2O exhibited the best compromise between conversion and selectivity at 350 °C, with a H2/CO2 mole ratio of 4 and a flow rate of 1 L/h.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41 (1996) 113 (https://doi.org/10.1016/S0360-0564(08)60041-3)
R. Neumann, in Progress in Inorganic Chemistry, K. D. Karlin, Ed., John Wiley & Sons, Inc., New York, 1998 (https://doi.org/10.1002/9780470166482.ch3)
C.L Hill, Chem. Rev. 98 (1998) 1 (https://doi.org/10.1021/cr960395y)
I.V. Kozhevnikov, Catalysts for fine chemical synthesis, catalysis by polyoxometalates, Vol. 2, Wiley, Chichester, 2002
S. Hocine, C. Rabia, M. M. Bettahar, M. Fournier, Stud. Surf. Sci. Catal. 130 (2000) 1895 (https://doi.org/10.1016/S0167-2991(00)80478-4)
N. Dimitratos, J. C. Védrine, Appl. Catal. 81 (2003) 561 (https://doi.org/10.1016/S0920-5861(03)00154-8)
S. Cheknoun, S. Mansouri, O. Benlounes, S. Hocine, J. Chem. Sci. 130 (2018) 40 (https://doi.org/10.1007/s12039-018-1447-y)
S. Mansouri, O. Benlounes, C. Rabia, R. Touvenot, M. M. Bettahar, S. Hocine, J. Mol. Catal., A 379 (2013) 255 (https://doi.org/10.1016/j.molcata.2013.08.006)
G. Busca, F. Cavani, E. Etienne, E. Finocchio, A. Galli, G. Selleri, F. Trifirò, J. Mol. Catal., A 114 (1996) 343 (https://doi.org/10.1016/S1381-1169(96)00337-8)
H. S Jiang, X. Mao, S. J. Xie, B. K. Zhong, J. Mol. Catal., A 185 (2002) 143 (https://doi.org/10.1016/S1381-1169(01)00449-6)
P. Putaj, F. Lefebvre, Coord. Chem. Rev. 255 (2011) 1642 (https://doi.org/10.1016/j.ccr.2011.01.030)
S. Ogo, M. Miyamoto, Y. Ide, T Sano, M. Sadakane, Dalton. Trans. 41 (2012) 9901 (https://doi.org/10.1039/C2DT30475A)
A. Yokoyama, K. Ohkubo, T. Ishizuka, T. Kojima, S. Fukuzumi, Dalton. Trans. 41 (2012) 10006 (https://doi.org/10.1039/C2DT30424D)
A. M. Khenkin, I. Efremenko, L. Weiner, J. M. L. Martin, R. Neumann, Chem. Eur. J. 16 (2010) 1356 (https://doi.org/10.1002/chem.200901673)
L. Z. Zhang, Y. Q. Lu, M. Rostam-Abadi, Phys. Chem. Chem. Phys. 14 (2012) 16633 (https://doi.org/10.1039/C2CP42209C)
B. S. Kwak, K. Vignesh, N. K. Park, H. J. Ryu, J. I. Baek, M. Kang, Fuel 143 (2015) 570 (https://doi.org/10.1016/j.fuel.2014.11.066)
P. H. Pandey, H. S. Pawar, J. CO2 Util. 41 (2020) 101267 (https://doi.org/10.1016/j.jcou.2020.101267)
S. Li, L. Guo, T. Ishihara, Catal. Today 339 (2020) 352 (https://doi.org/10.1016/j.cattod.2019.01.015)
W. K Fan, M. Tahir, J. Environ. Chem. Eng. 9 (2021)105460 (https://doi.org/10.1016/j.jece.2021.105460)
W. Wei, G. Jinlong, Front. Chem. Sci. 5 (2011) 2 (https://doi.org/10.1007/s11705-010-0528-3)
A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P. Ruiz, Appl. Catal., B 113–114 (2012) 2 (https://doi.org/10.1016/j.apcatb.2011.02.033)
A. Karelovic, P. Ruiz, Appl. Catal., B 113–114 (2012) 237 (https://doi.org/10.1016/j.apcatb.2011.11.043)
Y. Li, Q. Zhang, R. Chai, G. Zhao, F. Cao, Y. Liu, Y. Lu, Appl. Catal., A 510 (2016) 216 (https://doi.org/10.1016/j.apcata.2015.11.034)
R. A. Hubble, J. Y. Lim, J. S Dennis, Faraday Discuss. 192 (2016) 529 (https://doi.org/10.1039/C6FD00043F)
S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P Prabhakaran, S. Bajohr, Fuel 166 (2016) 276 (https://doi.org/10.1016/j.fuel.2015.10.111)
A. Tézé, G. Hervé, Inorg. Synth. 27(1990) 85 (https://doi.org/10.1002/9780470132586.ch16)
K. Filipek, Inorg. Chim. Acta 231 (1995) 237 (https://doi.org/10.1016/0020-1693(94)04347-X)
M. Sadakane, D. Tsukuma, M.H. Dickman, B. Bassem, U. Kortz, M. Higashijima, W. Ueda, Dalton. Trans. 35 (2006) 4271 (https://doi.org/10.1039/B606266K)
H. Chermette, F. Lefebvre, C.R. Chimie 15(2012) 143 (https://doi.org/10.1016/ j.crci.2011.09.002)
T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41(1996) 113 (https://doi.org/10.1016/S0360-0564(08)60041-3)
Y. Ding, Q. Gao, G. Li, H. Zhang, J. Wang, L. Yan, J. Suo, J. Mol. Catal., A 218 (2004) 161 (https://doi.org/10.1016/j.molcata.2004.04.019)
Q. Wu, X. Sang, F. Shao, W. Pang, Mater. Chem. Phys. 92 (2005) 16 (https://doi.org/10.1016/j.matchemphys.2004.07.026)
L. Méndez, R. Torviso, L. R. Pizzio, M. N. Blanco, Catal. Today 173 (2011) 32 (https://doi.org/10.1016/j.cattod.2011.03.028)
L. R. Pizzio, M. N. Blanco, Micropor. Mesopor. Mat. 103(2007) 40 (https://doi.org/10.1016/j.micromeso.2007.01.036)
J. B. Moffat, J. Mol. Catal. 52(1989) 169 (https://doi.org/10.1016/0304-5102(89)80088-4)
S. A. El-Molla, M. N. Hammed, G. A. El-Shobaky, Mater. Lett. 58 (2004) 1003 (https://doi.org/10.1016/j.matlet.2003.08.006)
H. G. El-Shobaky, A. S. Ahmed, N. R. E Radwan, J. Colloids Surf., A 274 (2006) 138 (https://doi.org/10.1016/j.colsurfa.2005.08.046)
C. Ancion, G. Poncelet, Appl. Catal., A 108 (1994) 31 (https://doi.org/10.1016/0926-860X(94)85178-6)
A. Gervasini, J. Fenyvesi, A. Auroux, Catal. Lett. 43(1997) 219 (https://doi.org/10.1023/ A:1018979731407)
M. Misono, Catal. Rev. Sci. Eng. 29 (1987) 269 (https://doi.org/10.1080/01614948708078072)
M. M. Jaffar, M. A. Nahil, P. T Williams, Energy Technol. 7 (2019) 1900795 (https://doi.org/10.1002/ente.201900795)
M. Gabrovska, R.Edreva-Kardijeva, D. Crisan, P. Tzvetkov, M. Shopska, I. Shtreva, React. Kin. Mech. Catal. 105 (2012) 79 (https://doi.org/10.1007/s11144-011-0378-0)
S. Abate, K. Barbera, Giglio E, F. Deorsola, S. Bensaid, S. Perathoner, R. Pirone, G. Centi, Ind. Eng. Chem. Res. 55 (2016) 8299 (https://doi.org/10.1021/acs.iecr.6b01581)
A. Borgschulte, N. Gallandat, B. Probst, R. Suter, E. Callini, D. Ferri, Y. Arroyo, R. Erni, H. Geerlings, A. Züttel, Phys. Chem. Chem. Phys. 15 (2013) 9620 (https://doi.org/10.1039/C3CP51408K)
S. Eckle, H. G. Anfang, R. J. Behm, J. Phys. Chem., C 115 (2011) 1361 (https://doi.org/10.1021/jp108106t)
E. Baraj, S. Vagaský, T. Hlinčík, K. Ciahotný, V. Tekáč, Chem. Pap. 70 (2016) 395 (https://doi.org/10.1515/chempap-2015-0216)
B. Miao, S. S. K. Ma, X .Wang, H. Su, S. H. Chan, Catal. Sci. Technol. 6 (2016) 4048 (https://doi.org/10.1039/C6CY00478D)
Z. M. Hu, K. Takahashi, H. Nakatsuji, Surf. Sci. 442 (1999) 90 (https://doi.org/10.1016/S0039-6028(99)00900-0)
H .Nakatsuji, Z. M. Hu, Int. J. Quantum. Chem. 77 (2000) 341 (https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<341::AID-QUA33>3.0.CO;2-T)