Ni-Bi-Sn ternary system liquidus surface projection Scientific paper

Main Article Content

Chingiz Abilov
https://orcid.org/0000-0001-7617-5737
Ikhtiyar Bakhtiyarly
https://orcid.org/0000-0003-3488-2235
Sayyara Sadigova
https://orcid.org/0009-0003-0492-4825
Mehriban Hasanova
https://orcid.org/0000-0002-2532-2597
Elmira Gasimova
https://orcid.org/0000-0002-9497-9066

Abstract

Physicochemical analysis investigations were conducted on six int­ernal polythermic sections of the Ni–Bi–Sn ternary system, and phase diagrams of the sections were constructed. It was determined that two of the sections were quasibinary, and four were non-quasibinary. The projection of the liquidus sur­face of the ternary system was constructed. The equations for the nonvariant equilibrium reactions occurring in the ternary system were compiled and their coordinates were determined. The presence of promising solid solution areas was revealed in some of the internal sections of the ternary system, and their bound­aries at room temperature were determined. The absence of new complex com­pounds and the presence of homogeneous regions indicate that the synthesized materials could be suitable for application as switching and contact layers in alternative energy sources.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
C. Abilov, I. Bakhtiyarly, S. Sadigova, M. Hasanova, and E. Gasimova, “Ni-Bi-Sn ternary system liquidus surface projection: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 9, pp. 1119–1130, Oct. 2025.
Section
Metallic Materials and Metallurgy

References

M. Gurtaran, Zh. Zhang, X. Li, H. Dong, J. Mater. Res. Technol. 30 (2024) 7476 (https://doi.org/10.1016/j.jmrt.2024.05.136)

M. d’Angelo, C. Galassi, N. Lecis, Energies 16 (2023) 6409 (https://doi.org/10.3390/en16176409)

F. Garmroudi, M. Parzer, A. Riss, C. Bourgès, S. Khmelevskyi, T. Mori, E. Bauer, A. Pustogow, Sci. Adv. 9 (2023) (https://doi.org/10.1126/sciadv.adj1611)

M. Wolf, J. Flormann, T. Steinhoff, G. Gerstein, F. Nürnberger, H. J. Maier, A. Feldhoff, Alloys 1 (2022) 3 (https://doi.org/10.3390/alloys1010002)

A. Karati, V. S. Hariharan, S. Ghosh, A. Prasad, M. Nagini, K. Guruvidyathri, R. Ch. Mallik, R. Shabadi, L. Bichler, B. S. Murty, U. V. Varadaraju, Scr. Mater. 186 (2020) 375 (https://doi.org/10.1016/j.scriptamat.2020.04.036)

G. P. Vassilev, K. I. Lilova, J.-C. Gachon, J. Alloys Compd. 469 (2009) 264 (https://doi.org/10.1016/j.jallcom.2008.01.100)

S.-K. Seo, M. Cho, H. Lee, J. Electron. Mater. 36 (2007) 1536 (https://link.springer.com/article/10.1007/s11664-007-0256-8)

N. Milcheva, J. Romanowska, G. Vassilev, Cent. Eur. J. of Chem. 9 (2011) 149 (https://link.springer.com/article/10.2478/s11532-010-0128-6)

G. Vassilev, T. Kristinova, K. Lilova, J. Gachon, J. Min. Metall., B 43 (2007) 141 (https://doi.org/10.2298/JMMB0702141V)

N. Milcheva, P. Broz, J. Buršík, P. Vassilev, Thermochim. Acta 534 (2012) 41 (https://doi.org/10.1016/j.tca.2012.02.011)

Ch. Abilov, S. Sadigova, M. Hasanova, E. Kasumova, Int. J. Mod. Phys., B 36 (2022) 2250219 (https://doi.org/10.1142/S0217979222502198)

Ch. Abilov, M. Hasanova, E. Kasumova, N. Huseynova, E. Kurbanov, AIP Conf. Proc. 3122 (2024) 050013 (https://doi.org/10.1063/5.0216063)

Sh. Abdullaeva, F. Mammadov, I. Bakhtiyarly, Zh. Neorg. Khim. (Russ. J. Inorg. Chem.) 65 (2020) 98 (https://link.springer.com/article/10.1134/S0036023619110020)

E. N. Ismayilova, L. F. Mashadiyeva, I. B. Bakhtiyarly, M. B. Babanly, Kondens. Sredy Mezhfaznye Granitsy (Condensed Matter and Interphases) 25 (2023) 47 (https://journals.vsu.ru/kcmf/article/view/11036/11228)

M. I. Zargarova, K. Sh. Kakhramanov, A. A. Mageramov, R. V. Roshal, Physicochemical basis for the selection of contact materials, Elm, Baku, 1990 (ISBN: 5-8066-0371-7).