Ameliorating heavy metal-induced oxidative stress in valerian: The role of melatonin

Main Article Content

Elvisa Hodžić
https://orcid.org/0000-0003-3421-2426
Sebila Rekanović
https://orcid.org/0000-0001-6202-3556
Milica Balaban
https://orcid.org/0000-0001-7095-4764
Halid Makić
https://orcid.org/0009-0006-1679-3078

Abstract

Heavy metals ubiquitously found in soil and water, as a serious environmental problem, are disrupting plant mineral nutrition homeostasis, osmotic balance, and metabolism. Application of some biostimulants can alleviate the disruption. Melatonin as a signal molecule, and antioxidant plays an important role in plant growth and stress tolerance due to its ability to directly neutralize reactive oxygen and nitrogen species. The reduction or mitigation of heavy metals adverse effects in valerian plants grown in open field conditions using melatonin was investigated in this paper. HPLC-FLD technique was used to identify and quantify melatonin concentration in valerian root extracts. Also, physiological, and biochemical plant status under abiotic stress was examined, especially in 100 µM melatonin pre-treated plants. Higher concentrations of endogenous melatonin were measured in roots of Cd and Zn treated plants.  Melatonin application alleviated the negative effect of Cd, particularly evident in Cd-Melatonin treatment which restored or enhanced bioactive compound levels. Melatonin effectively mitigates Cd and Zn-induced stress in valerian by enhancing both non-enzymatic and enzymatic antioxidant systems and promoting the synthesis of protective compounds. These findings highlight melatonin potential as a sustainable biostimulant to support plant resilience and productivity in heavy metal-stressed environments.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
E. Hodžić, Sebila Rekanović, Milica Balaban, and Halid Makić, “Ameliorating heavy metal-induced oxidative stress in valerian: The role of melatonin”, J. Serb. Chem. Soc., Jul. 2025.
Section
Environmental Chemistry

References

M.A. Altaf, Y. Hao, H. Shu, M. A. Mumtaz, S. Cheng, M. N. Alyemeni, P. Ahmad, Z. Wang, J. Haz. Mater. 454 (2023) 131468 (https://doi.org/10.1016/j.jhazmat.2023.131468)

E. Hodžić, S. Galijašević, M. Balaban, S. Rekanović, H. Makić, B. Kukavica, D. Mihajlović, Turkish J. Chem. 45 (2021) 737 (https://doi.org/10.3906/kim-2012-7)

E. Hodžić, M. Balaban, B. Kukavica, S. Rekanovic, The Ubiquity and Role of Melatonin in Plant Metabolism and Response to Abiotic Stress. In Melatonin: Production, Functions and Benefits A. R. Martínez, F. L. Muñoz, J. Egea. Nova Science Publishers, Hauppauge, New York, USA, 2021 (ISBN: 978-1-53619-031-1)

N. Zhang, H. J. Zhang, B. Zhao, Q. Q. Sun, Y. Y. Cao, R. Li, et al., J. Pin. Res. 56 (2014) 39 (https://doi.org/10.1111/jpi.12095)

M. H. Siddiqui, S. Alamri, Q. D. Alsubaie, H. M. Ali, A. A. Ibrahim, A. Alsadon, Ecotox. Environ. Safety 180 (2019) 656 (https://doi.org/10.1016/j.ecoenv.2019.05.043)

R. Colombage, M. B. Singh, P. L. Balla, Intern. J. Mol. Sci. 24 (2023) 7447 (https://doi.org/10.3390/ijms24087447)

F. Godoy, K. Olivos-Hernández, C. Stange, M. Handford, Plants 10 (2021) 186 (https://doi.org/10.3390/plants10020186)

T. Chen, Y. Su, Human Ecol. Risk Assess.: An Int. J. 24 (2018) 1550 (https://doi.org/10.1080/10807039.2017.1416580)

C. H. Shekhar, H. Kırmızıbekmez, Phytochem. Rev. (2024) (https://doi.org/10.1007/s11101-024-10061-x)

Md. N. Hoque, Md. Tahjib-Ul-Arif, A. Hannan, N. Sultana, S. Akhter, Md. Hasanuzzaman, F. Akter, Md. S. Hossain, Md. A. Sayed, Md. T. Hasan, M. Skalicky, X. Li, M. Brestič, Intern. J. Mol. Sci. 22 (2021) 11445 (https://doi.org/10.3390/ijms222111445)

M. B. Arnao, J. Hernandez-R, Phytoch. Anal. 20 (2009) 14 (https://doi.org/10.1002/pca.1083)

V. L. Singleton, R. Orthofer, R. M. Lamuela-Raventos, Meth. Enzym. 299 (1999) 152 (https://doi.org/10.1016/S0076-6879(99)99017-1)

C. C. Chang, M. H. Yang, H. M. Wen, J. C. Chern, J. Food Drug Anal. 10 (2002) 178 (https://doi.org/10.38212/2224-6614.2748)

I. F. F. Benzie, J. J. Strain, Meth. Enzym. 299 (1999) 15 (https://doi.org/10.1016/S0076-6879(99)99005-5)

C. Soler-Rivas, J. C. Espin, H. J. Wichers, Phytochem. Anal. 11 (2000) 330 (https://doi.org/10.1002/1099-1565(200009/10)11:5<330::AID-PCA534>3.0.CO;2-G)

R. Apak, K. Güçlü, B. Demirata, M. Özyürek, S. E. Çelik, B. Bektaşoğlu, K. Işıl Berker, D. Özyurt, Molecules 12 (2007) 1496 (https://doi.org/10.3390/12071496)

O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 193 (1951) 265 (https://doi.org/10.1016/s0021-9258(19)52451-6)

H. Teisseire, V. Guy, Plant Sci. 153 (2000) 65 (https://doi.org/10.1016/S0168-9452(99)00257-5)

Y. Jiang, S. Huang, L. Ma, L. Kong, S. Pan, X. Tang, H. Tian, M. Duan, Z. Mo, Antioxidants 11 (2022) (https://doi.org/10.3390/antiox11040776)

W. Zeng, S. Mostafa, Z. Lu, B. Jin, Front. Plant Sci. 13 (2022) 847175 (https://doi.org/10.3389/fpls.2022.847175)

A. Baran, Ecol. Chem. Eng. A. 19 (2012) 669 (https://doi.org/10.2428/ecea.2012.19(07)069)

Y. Tang, L. Lin, Y. Xie, J. Liu, G. Sun, H. Li, Z. Liu, Z. Huang, Z. He, L. Tu, Intern. J. Phytorem. 20 (2018) 295 (https://doi.org/10.1080/15226514.2017.1374341)

H. Obata, M. Umebayashi, J. Plant Nutr. 20 (1997) 97 (https://doi.org/10.1080/01904169709365236)

M. H. Ibrahim, Y. Chee Kong, N. A. Mohd Zain, Molecules 22 (2017) 1623 (https://doi.org/10.3390/molecules22101623)

L. Chalker-Scott, Adv. Bot. Res. 37 (2002) 103 (https://doi.org/10.1016/S0065-2296(02)37046-0)

M. S. Jahan, S. GuO, A. R. Baloch, J. Sun, S. Shu, Y. Wang, G. J. Ahammed, K. Kabir, R. Roy, Ecotox. Environ. Saf. 197 (2020) 110593 (https://doi.org/10.1016/j.ecoenv.2020.110593)

J. Li, J. Liu, T. Zhu, C. Zhao, L. Li, M. Chen, Internat. J. Mol. Sci. 20 (2019) 1735 (https://doi.org/10.3390/ijms20071735)

J. Li, J. Xie, J. Yu, J. Lyv, J. Zhang, D. Ding, N. Li, J. Zhang, E. P. Bakpa, T. Yang, T. Niu, F. Gao, Front. Plant Sci. 13 (2022) 998293 (https://doi.org/10.3389/fpls.2022.998293)

Y. Xu, Y. Li, K. G. Maffucci, L. Huang, R. Zeng, Molecules 22 (2017) 2080 (https://doi.org/10.3390/molecules22122080)

M. Moustafa-Farag, A. Mahmoud, M. B. Arnao, M. S. Sheteiwy, M. Dafea, M. Soltan, A. Elkelish, M. Hasanuzzaman, S. Ai, Antioxidants 9 (2020) 809 (https://doi.org/10.3390/antiox9090809)

S. Singh, P. Parihar, R. Singh, V. P. Singh, S. M. Prasad, Front. Plant Sci. 6 (2016) 1143 (https://doi.org/10.3389/fpls.2015.01143)

E. Hodžić, M. Balaban, N. Šuškalo, S. Galijašević, D. Hasanagić, B. Kukavica, J. Serb. Chem. Soc. 84 (2019) 11 (https://doi.org/10.2298/JSC180504070H)

J. Ni, Q. Wang, F. A. Shah, W. Liu, D. Wang, S. Huang, S. Fu, L. Wu, Molecules 23 (2018) 799 (https://doi.org/10.3390/molecules23040799)

S. Menhas, X. Yang, K. Hayat, T. Aftab, J. Bundschuh, M. B. Arnao, Y. Zhou, P. Yhou, J. Plant Gr. Regul. 41 (2022) 922 (https://doi.org/10.1007/s00344-021-10349-8).

Most read articles by the same author(s)