Ameliorating heavy metal-induced oxidative stress in valerian: The role of melatonin
Main Article Content
Abstract
Heavy metals ubiquitously found in soil and water, as a serious environmental problem, are disrupting plant mineral nutrition homeostasis, osmotic balance, and metabolism. Application of some biostimulants can alleviate the disruption. Melatonin as a signal molecule, and antioxidant plays an important role in plant growth and stress tolerance due to its ability to directly neutralize reactive oxygen and nitrogen species. The reduction or mitigation of heavy metals adverse effects in valerian plants grown in open field conditions using melatonin was investigated in this paper. HPLC-FLD technique was used to identify and quantify melatonin concentration in valerian root extracts. Also, physiological, and biochemical plant status under abiotic stress was examined, especially in 100 µM melatonin pre-treated plants. Higher concentrations of endogenous melatonin were measured in roots of Cd and Zn treated plants. Melatonin application alleviated the negative effect of Cd, particularly evident in Cd-Melatonin treatment which restored or enhanced bioactive compound levels. Melatonin effectively mitigates Cd and Zn-induced stress in valerian by enhancing both non-enzymatic and enzymatic antioxidant systems and promoting the synthesis of protective compounds. These findings highlight melatonin potential as a sustainable biostimulant to support plant resilience and productivity in heavy metal-stressed environments.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M.A. Altaf, Y. Hao, H. Shu, M. A. Mumtaz, S. Cheng, M. N. Alyemeni, P. Ahmad, Z. Wang, J. Haz. Mater. 454 (2023) 131468 (https://doi.org/10.1016/j.jhazmat.2023.131468)
E. Hodžić, S. Galijašević, M. Balaban, S. Rekanović, H. Makić, B. Kukavica, D. Mihajlović, Turkish J. Chem. 45 (2021) 737 (https://doi.org/10.3906/kim-2012-7)
E. Hodžić, M. Balaban, B. Kukavica, S. Rekanovic, The Ubiquity and Role of Melatonin in Plant Metabolism and Response to Abiotic Stress. In Melatonin: Production, Functions and Benefits A. R. Martínez, F. L. Muñoz, J. Egea. Nova Science Publishers, Hauppauge, New York, USA, 2021 (ISBN: 978-1-53619-031-1)
N. Zhang, H. J. Zhang, B. Zhao, Q. Q. Sun, Y. Y. Cao, R. Li, et al., J. Pin. Res. 56 (2014) 39 (https://doi.org/10.1111/jpi.12095)
M. H. Siddiqui, S. Alamri, Q. D. Alsubaie, H. M. Ali, A. A. Ibrahim, A. Alsadon, Ecotox. Environ. Safety 180 (2019) 656 (https://doi.org/10.1016/j.ecoenv.2019.05.043)
R. Colombage, M. B. Singh, P. L. Balla, Intern. J. Mol. Sci. 24 (2023) 7447 (https://doi.org/10.3390/ijms24087447)
F. Godoy, K. Olivos-Hernández, C. Stange, M. Handford, Plants 10 (2021) 186 (https://doi.org/10.3390/plants10020186)
T. Chen, Y. Su, Human Ecol. Risk Assess.: An Int. J. 24 (2018) 1550 (https://doi.org/10.1080/10807039.2017.1416580)
C. H. Shekhar, H. Kırmızıbekmez, Phytochem. Rev. (2024) (https://doi.org/10.1007/s11101-024-10061-x)
Md. N. Hoque, Md. Tahjib-Ul-Arif, A. Hannan, N. Sultana, S. Akhter, Md. Hasanuzzaman, F. Akter, Md. S. Hossain, Md. A. Sayed, Md. T. Hasan, M. Skalicky, X. Li, M. Brestič, Intern. J. Mol. Sci. 22 (2021) 11445 (https://doi.org/10.3390/ijms222111445)
M. B. Arnao, J. Hernandez-R, Phytoch. Anal. 20 (2009) 14 (https://doi.org/10.1002/pca.1083)
V. L. Singleton, R. Orthofer, R. M. Lamuela-Raventos, Meth. Enzym. 299 (1999) 152 (https://doi.org/10.1016/S0076-6879(99)99017-1)
C. C. Chang, M. H. Yang, H. M. Wen, J. C. Chern, J. Food Drug Anal. 10 (2002) 178 (https://doi.org/10.38212/2224-6614.2748)
I. F. F. Benzie, J. J. Strain, Meth. Enzym. 299 (1999) 15 (https://doi.org/10.1016/S0076-6879(99)99005-5)
C. Soler-Rivas, J. C. Espin, H. J. Wichers, Phytochem. Anal. 11 (2000) 330 (https://doi.org/10.1002/1099-1565(200009/10)11:5<330::AID-PCA534>3.0.CO;2-G)
R. Apak, K. Güçlü, B. Demirata, M. Özyürek, S. E. Çelik, B. Bektaşoğlu, K. Işıl Berker, D. Özyurt, Molecules 12 (2007) 1496 (https://doi.org/10.3390/12071496)
O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 193 (1951) 265 (https://doi.org/10.1016/s0021-9258(19)52451-6)
H. Teisseire, V. Guy, Plant Sci. 153 (2000) 65 (https://doi.org/10.1016/S0168-9452(99)00257-5)
Y. Jiang, S. Huang, L. Ma, L. Kong, S. Pan, X. Tang, H. Tian, M. Duan, Z. Mo, Antioxidants 11 (2022) (https://doi.org/10.3390/antiox11040776)
W. Zeng, S. Mostafa, Z. Lu, B. Jin, Front. Plant Sci. 13 (2022) 847175 (https://doi.org/10.3389/fpls.2022.847175)
A. Baran, Ecol. Chem. Eng. A. 19 (2012) 669 (https://doi.org/10.2428/ecea.2012.19(07)069)
Y. Tang, L. Lin, Y. Xie, J. Liu, G. Sun, H. Li, Z. Liu, Z. Huang, Z. He, L. Tu, Intern. J. Phytorem. 20 (2018) 295 (https://doi.org/10.1080/15226514.2017.1374341)
H. Obata, M. Umebayashi, J. Plant Nutr. 20 (1997) 97 (https://doi.org/10.1080/01904169709365236)
M. H. Ibrahim, Y. Chee Kong, N. A. Mohd Zain, Molecules 22 (2017) 1623 (https://doi.org/10.3390/molecules22101623)
L. Chalker-Scott, Adv. Bot. Res. 37 (2002) 103 (https://doi.org/10.1016/S0065-2296(02)37046-0)
M. S. Jahan, S. GuO, A. R. Baloch, J. Sun, S. Shu, Y. Wang, G. J. Ahammed, K. Kabir, R. Roy, Ecotox. Environ. Saf. 197 (2020) 110593 (https://doi.org/10.1016/j.ecoenv.2020.110593)
J. Li, J. Liu, T. Zhu, C. Zhao, L. Li, M. Chen, Internat. J. Mol. Sci. 20 (2019) 1735 (https://doi.org/10.3390/ijms20071735)
J. Li, J. Xie, J. Yu, J. Lyv, J. Zhang, D. Ding, N. Li, J. Zhang, E. P. Bakpa, T. Yang, T. Niu, F. Gao, Front. Plant Sci. 13 (2022) 998293 (https://doi.org/10.3389/fpls.2022.998293)
Y. Xu, Y. Li, K. G. Maffucci, L. Huang, R. Zeng, Molecules 22 (2017) 2080 (https://doi.org/10.3390/molecules22122080)
M. Moustafa-Farag, A. Mahmoud, M. B. Arnao, M. S. Sheteiwy, M. Dafea, M. Soltan, A. Elkelish, M. Hasanuzzaman, S. Ai, Antioxidants 9 (2020) 809 (https://doi.org/10.3390/antiox9090809)
S. Singh, P. Parihar, R. Singh, V. P. Singh, S. M. Prasad, Front. Plant Sci. 6 (2016) 1143 (https://doi.org/10.3389/fpls.2015.01143)
E. Hodžić, M. Balaban, N. Šuškalo, S. Galijašević, D. Hasanagić, B. Kukavica, J. Serb. Chem. Soc. 84 (2019) 11 (https://doi.org/10.2298/JSC180504070H)
J. Ni, Q. Wang, F. A. Shah, W. Liu, D. Wang, S. Huang, S. Fu, L. Wu, Molecules 23 (2018) 799 (https://doi.org/10.3390/molecules23040799)
S. Menhas, X. Yang, K. Hayat, T. Aftab, J. Bundschuh, M. B. Arnao, Y. Zhou, P. Yhou, J. Plant Gr. Regul. 41 (2022) 922 (https://doi.org/10.1007/s00344-021-10349-8).