Theoretical and experimental prediction of corrosion inhibition efficiency of isatin and its derivatives by DFT calculations and weight loss method – A comparative study

Main Article Content

Jone Celestina Joseph Xavier Raj
https://orcid.org/0009-0000-3375-3648
Muthumanickam Shenbagapushpam
https://orcid.org/0000-0001-9019-2357
Arul Deepa Vincent
https://orcid.org/0009-0004-2703-9404
Priyadharsani Shanmugaraj
https://orcid.org/0009-0006-5663-3044
Chakkravarthy Raj
https://orcid.org/0009-0005-2948-6379
Satheesh Rajamohan
https://orcid.org/0000-0003-4248-7497
Ramasamy Raja Viruthachalam
https://orcid.org/0000-0001-7008-3305

Abstract

The corrosion inhibition performance of isatin and its N1/C5 substituted derivatives were analyzed by DFT calculation (B3LYP, 6311g, dp) in gas phase and solvation method with the help of Gaussian 09W and Gaussian 16. The calculated quantum chemical parameters such as ELUMO, EHOMO, Ionization potential (I), Electron affinity (A), Electronegativity (c), band gap energy (DE), Softness (s), Hardness (h), Electrophilicity (w) proved that isatin and its derivatives have the tendency to donate the electrons to the surface of metal ion on adsorption. The number of electron transfer (∆N) from isatin and its derivatives to iron metal was calculated theoretically and said to possess the order IX>III>VII>IV>II>V>I>VIII>VI. The experimental studies reveal that the same order of inhibition as like theoretical studies. Mulliken’s charge distribution analysis of the same compounds indicates the high negative magnitude on N1 atom. The negative magnitude of N1 atom was altered by substitution in N1 and C-5 position of isatin which was identified theoretically. Fukui local parameters were also calculated and used in the prediction of the compounds local selectivity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. C. . Joseph Xavier Raj, “Theoretical and experimental prediction of corrosion inhibition efficiency of isatin and its derivatives by DFT calculations and weight loss method – A comparative study”, J. Serb. Chem. Soc., Nov. 2025.
Section
Theoretical Chemistry

References

H. Tandon, T. Chakraborthy, V. Suhag, Res. Med. Eng. Sci. 7 (2019) 792 (https://crimsonpublishers.com/rmes/pdf/RMES.000668.pdf)

M. Raftani, T. Abram, N. Bennani, M. Bouachrine, Res. Chem. 2 (2020) 100040 (https://dx.doi.org/10.1016/j.rechem.2020.100040)

H. Jouypazadeh, H. Farrokhpour, M. M. Momeni, Surf. Inter. 26 (2021) 101379 (https://dx.doi.org/10.1016/j.surfin.2021.101379)

J. Xu, Q. Wan, M. Anpo, S. Lin, J. Phys. Chem. C. 124 (2020) 6624 (https://dx.doi.org/10.1021/acs.jpcc.9b11385)

Z.-Y. Liu, D. Wang, D.-T. Li, H.-Q. Wang, Comput. Theor. Chem. 1214 (2022) 113759 (https://dx.doi.org/10.1016/j.comptc.2022.113759)

S. Erdogan, Z. S. Safi, S. Kaya, D. O. Isın, L. Guo, C. Kaya, J. Mol. Struct. 1134 (2017) 751 (https://dx.doi.org/10.1016/j.molstruc.2017.01.037)

S. Perumal, S. Muthumanickam, A. Elangovan, R. Karthik, R. Sayee kannan, K. K. Mothilal, J Bio Tribo Corros. 3 (2017) 13 (https://dx.doi.org/10.1007/s40735-017-0072-5)

S. Muthumanickam, B. Jeyaprabha, R. Karthik, A. Elangovan, P. Prakash, Int. J. Corros. Scale Inhib. 4 (2015) 365 (https://dx.doi.org/10.17675/2305-6894-2015-4-4-6)

S. Perumal, S. Muthumanickam, A. Elangovan, N. Muniyappan, R. Sayee Kannan, K. Krishnamoorthi, Lett. App. Nanobiosci. 13 (2024) 12 (https://doi.org/10.33263/LIANBS131.012)

K. O. Sulaiman, A. T. Onawole, Comput. Theor. Chem. 1093 (2016) 73 (https://dx.doi.org/10.1016/j.comptc.2016.08.014)

M. Pitchaipillai, K. Raj, J. Balasubramanian, P. Periakaruppan, Int. J. Miner. Metall. Mater. 21 (2014) 1083 (https://dx.doi.org/10.1007/s12613-014-1013-7)

R. Karthik, P. Muthukrishnan, S.-M. Chen, B. Jeyaprabha, P. Prakash, Int. J. Electrochem. Sci. 10 (2015) 3707 (https://doi.org/10.1016/S1452-3981(23)06573-2)

I. B. Obot, A. Meroufel, I. B. Onyeachu, A. Alenazi, A. A. Sorour, J. Mol. Liq. 296 (2019) 111760 (https://dx.doi.org/10.1016/j.molliq.2019.111760)

L. M. De Andrade, C. Paternoster, P. Chevallier, S. Gambaro, P. Mengucci, D. Mantovani, Bioactive Materials 11 (2022) 166 (https://doi.org/10.1016/j.bioactmat.2021.09.026)

L. K. M. O. Goni, M. A. J. Mazumder, M. A. Quraishi, M. M. Rahman, Chem. Asian. J. 16 (2021) 1324 (https://dx.doi.org/10.1002/asia.202100201)

S. Z. Salleh, A. H. Yusoff, S. K. Zakaria, M. A. A. Taib, A. A. Seman, M. N. Masri, M. Mohamad, S. Mamat, S. A. Sobri, A. Ali, P. T. Teo, J. Clean. Prod. 304 (2021) 127030 (https://dx.doi.org/10.1016/j.jclepro.2021.127030)

N. Hossain, M. A. Chowdhury, M. Kchaou, J. Adh. Sci. Technol. 35 (2021) 673 (https://dx.doi.org/10.1080/01694243.2020.1816793)

L. Chen, D. Lu, Y. Zhang, Materials 15 (2022) 2023 (https://dx.doi.org/10.3390/ma15062023)

A. Kadhim, A. A. Al-Amiery, R. Alazawi, M. K. S. Al-Ghezi, R. H. Abass, Int. J. Corros. Scale Inhib. 10 (2021) 54 (https://dx.doi.org/10.17675/2305-6894-2021-10-1-3)

Q. Yuan, R. Cheng, S. Zou, C. Ding, H. Liu, Y. Wang, D. Yang, X. Xiao, Q. Jiang, R. Tang, J. Chen, J. Mater. Res. Technol. 9 (2020) 11935 (https://dx.doi.org/10.1016/j.jmrt.2020.08.012)

K. R. Ansari, M. A. Quraishi, J. Taiwan Inst. Chem. Eng. 54 (2015) 145 (https://dx.doi.org/10.1016/j.jtice.2015.03.013)

G. Chen, H.-J. Su, Y.-P. Song, Y. Gao, J. Zhang, X.-J. Hao, J.-R. Zhao, Res Chem Intermed. 39 (2013) 3669 (https://dx.doi.org/10.1007/s11164-012-0870-9)

Y. Kharbach, F. Z. Qachchachi, A. Haoudi, M. Tourabi, A. Zarrouk, C. Jama, L. O. Olasunkanmi, E. E. Ebenso, F. Bentiss, J. Mol. Liq. 246 (2017) 302 (https://dx.doi.org/10.1016/j.molliq.2017.09.057)

D. K. Verma, R. Sahu, E. Berdimurodov, C. Verma, M. A. Quraishi, V. K. Jain, K. Berdimuradov, J. Mol. Struct. 1294 (2023) 136313 (https://dx.doi.org/10.1016/j.molstruc.2023.136313)

A. A. Altalhi, Int. J. Electrochem. Sci. 19 (2024) 100449 (https://dx.doi.org/10.1016/j.ijoes.2023.100449)

H. A. El-Ghamry, A. Fawzy, T. A. Farghaly, T. M. Bawazeer, N. Alqarni, F. M. Alkhatib, M. Gaber, Arab. J. Chem. 15 (2022) 103522 (https://dx.doi.org/10.1016/j.arabjc.2021.103522)

H. M. A. El-Lateef, Appl. Surf. Sci. 501 (2020) 144237 (https://dx.doi.org/10.1016/j.apsusc.2019.144237)

D. Ma, J. Zhao, L. Zhang, J. Huang, J. Liu, T. Ren, Mater. Chem. Phys. 307 (2023) 128163 (https://dx.doi.org/10.1016/j.matchemphys.2023.128163)

A. Al-Amiery, W. N. R. W. Isahak, W. K. Al-Azzawi, J. Mol. Struct. 1288 (2023) 135829 (https://dx.doi.org/10.1016/j.molstruc.2023.135829)

T. H. A. Hasanin, A. M. A. El Malak, S. A. M. Refaey, Egypt. J. Chem. 64 (2021) 2377 (https://dx.doi.org/10.21608/EJCHEM.2021.43225.2873)

P. Udhayakala, T. V. Rajendiran, S. Gunasekaran, J. Comp. Meth. Mol. Des. 2 (2012) 1 (https://www.scholarsresearchlibrary.com/articles/theoretical-approach-to-the-corrosion-inhibition-efficiency-of-some-pyrimidine-derivatives-using-dft-method.pdf)

L. Guo, X. Ren, Y. Zhou, S. Xu, Y. Gong, S. Zhang, Arab. J. Chem. 10 (2017) 121 (https://dx.doi.org/10.1016/j.arabjc.2015.01.005)

D. M. Mamand, T. M. K. Anwer, H. M. Qadr, Corros. Rev. 42 (2024) 1 (https://dx.doi.org/10.1515/corrrev-2022-0112)

P. Kumar, I. Soni, G. K. Jayaprakash, S. Kumar, S. Rao, R. Flores-Moreno, A. S. Sowmyashree, Inorg. Chem. Commun. 146 (2022) 110110 (https://dx.doi.org/10.1016/j.inoche.2022.110110)

H. H. Rasul, D. M. Mamad, Y. H. Azeez, R. A. Omer, K. A. Omer, Comput. Theor. Chem. 1225 (2023) 114177 (https://dx.doi.org/10.1016/j.comptc.2023.114177)

D. M. Mamand, H. M. Qadr, Corros. Rev. 41 (2023) 427 (https://dx.doi.org/10.1515/corrrev-2022-0085)

N. A. Wazzan, I. B. Obot, S. Kaya, J. Mol. Liq. 221 (2016) 579 (https://dx.doi.org/10.1016/j.molliq.2016.06.011)

B. Tuzun, Bhawsar, J Arab. J. Chem. 14 (2021) 102927 (https://dx.doi.org/10.1016/j.arabjc.2020.102927)

L. Tan, J. Li, X. Zeng, Materials 16 (2023) 2148 (https://dx.doi.org/10.3390/ma16062148)

R. K. Roy, H. Hirao, J. Chem. Phys. 113 (2000) 1372. (https://doi.org/10.1063/1.481927).