A CFD investigation of the performance of stirred tanks Scientific paper

Main Article Content

Kamla Youcef
https://orcid.org/0000-0002-3428-4748
Zied Driss
https://orcid.org/0000-0003-0397-1868
Mohamed Foukrach
https://orcid.org/0009-0006-1259-985X
Sergio Rosa
https://orcid.org/0000-0002-8528-5142
Touhami Baki
https://orcid.org/0000-0003-0246-0281

Abstract

Rushton turbine was employed in this study to numerically analyze the fluid flow it generates within a stirred tank. The topology of the resulting flow was found to be strongly dependent on several parameters, including the geometric configurations of the system and the properties of the moving fluids. The governing equations, based on the k–ε model, were solved using the finite volume method. Velocity field profiles, streamlines and vortex sizes were ana­lyzed for several geometries, varying the number of blades from 6 to 12 and others. A comparison was also conducted to evaluate the effect of the number of stirring mobiles used to mix the fluid (single stage, two stages and three stages), as well as the influence of the spacing ratio between the different stir­rers. Finally, our numerical simulation procedure was validated through com­paring the results obtained with experimental work available in the literature, showing good agreement between the different approaches.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
K. Youcef, Z. Driss, M. Foukrach, S. Rosa, and T. Baki, “A CFD investigation of the performance of stirred tanks: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 11, pp. 1369–1382, Nov. 2025.
Section
Chemical Engineering

References

Z. Driss, in Procedings of the International Conference on Advances in Mechanical Engineering and Mechanics, Hammamet, Tunisia, 2006, pp. 1–6 (https://dx.doi.org/10.15866/irease.v7i3.3729)

L. Li, B. Xu, Chem. Papers 71 (2017) 1863 (https://dx.doi.org/10.1007/s11696-017-0180-1)

Y. Cui, H. Zhang, X. Li, M. Yang, Z. Guan, Int. J. Agric. Biol. Eng. 11 (2018) 111 (https://dx.doi.org/10.25165/j.ijabe.20181104.2729)

M. Jaszczur, A. Młynarczykowska, L. Demurtas Energies 13(3) (2020) 640 (https://dx.doi.org/10.3390/en13030640)

F. L. Yang, S. J. Zhou, C. X. Zhang, Korean J. Chem. Eng. 32 (2015) 816 (https://doi.org/10.1007/s11814-014-0255-4)

L. Liangchao, C. Ning, X. Kefeng, X. Beiping, Int. J. Chem. React. Eng. 17 (2019) 20180215 (https://doi.org/10.1515/ijcre-2018-0215)

M. Kordas, G. Story, M. Konopacki, R. Rakoczy, Ind. Eng. Chem. Res. 52 (2013) 13818 (https://doi.org/10.1021/ie303086r)

H. Ameur, Y. Kamla, Instal 6 (2020) 42 (https://doi.org/10.36119/15.2020.6.5)

Y. Kamla, H. Ameur, M. I. Arab, B. Azeddine, Data Brief 39 (2021) 107669 (https://doi.org/10.1016/j.dib.2021.107669)

X. Dang, J. Guo, L.Yang, S. Xue, B. Ai, X. Li, L. Chen, W. Li, H. Qin, J. Zhang, J. Taiwan Inst. Chem. Eng. 131 (2022) 104 (https://doi.org/10.1016/j.jtice.2021.11.016)

S. Youcefi, A. Mokhefi, M. Bouzit, A. Youcefi, Int. J. Heat Tech. 41 (2023) 1489 (https://doi.org/10.18280/ijht.410611)

S. Bonnot, F. Cabaret, L. Fradette, P. A. Tanguy, Chem. Eng. Res. Des. 85 (2007) 1129 (https://doi.org/10.1205/cherd06215)

N. Hashemi, F. Ein-Mozaffari, S. R. Upreti, D. K. Hwang, Chem. Eng. Sci. 151 (2016) 25 (https://doi.org/10.1016/j.ces.2016.05.003)

C. Yang, J. Yao, X. Chen, M. Xie, G. Zhou, Z. Xu, B. Liu, Chem. Eng. Res. Des. 202 (2024) 377 (https://doi.org/10.1016/j.cherd.2023.12.040

H. H. Mortensen, F. Innings, A. Håkansson, Chem. Eng. Res. Des. 121 (2017) 245 (https://doi.org/10.1016/j.cherd.2017.03.016)

S. M. Mahmoudi, M. Yianneskis, in Fluid Mechanics of Mixing. Modelling, Operations and Experimental Techniques, R. King, Ed., Springer, Dordrecht, 1992, pp. 11–18 (https://doi.org/10.1007/978-94-015-7973-5_2)

K. Rutherford, K. C. Lee, S. M. M. Mahmoudi, M. Yianneskis, AIChE 42 (1996) 332 (https://doi.org/10.1002/aic.690420204)

A. W. Nienow, Chem. Eng. Sci. 52 (1997) 2557 (https://doi.org/10.1016/S0009-2509(97)00072-9)

P. M. Armenante, Y. T. Huang, T. Li, Chem. Eng. Sci. 47 (1992) 2865 (https://doi.org/10.1016/0009-2509(92)87143-E)

G. Montante, A. Brucato, K. C. Lee, M. Yianneskis, Canadian J. Chem. Eng. 77 (2009) 649 (https://doi.org/10.1002/cjce.5450770405)

A. Hadjeb, M. Bouzit, Y. Kamla, H. Ameur, Green Sci. 19 (2017) 83 (https://doi.org/10.1515/pjct-2017-0053)

S. Dabiri, A. Noorpoor, M. Arfaee, P. Kumar, W. Rauch, Water (Switzerland) 14 (2021) 105 (https://doi.org/10.3390/w13121629)

A. Reid, R. Rossi, C. Cottini, A. Benassi, Meccanica 15 (2024) 1 (https://doi.org/10.1007/s11012-024-01824-z)

H. Wu, G. K. Patterson, Chem. Eng. Sci. 44 (1989) 2207 (https://doi.org/10.1016/0009-2509(89)85155-3)

Z. Driss, A. Kaffel, B. B. Amira, G. Bouzgarrou, M. S. Abid, Am. J. Energy Res. 2 (2014) 67 (https://doi.org/10.12691/ajer-2-3-4)

D. A. Deglon, C. J. Meyer, Minerals Eng. 19 (2006) 1059 (https://doi.org/10.1016/j.mineng.2006.04.001)

C. D. Tacǎ, M. Pǎunescu, Chem. Eng. Sci. 56 (2001) 4445 (https://doi.org/10.1016/S0009-2509(01)00096-3)

J. Karcz, M. Major, Chem. Eng. Process. Proc. Intens. 37 (1998) 249 (https://doi.org/10.1016/S0255-2701(98)00033-6).