A CFD investigation of the performance of stirred tanks Scientific paper
Main Article Content
Abstract
Rushton turbine was employed in this study to numerically analyze the fluid flow it generates within a stirred tank. The topology of the resulting flow was found to be strongly dependent on several parameters, including the geometric configurations of the system and the properties of the moving fluids. The governing equations, based on the k–ε model, were solved using the finite volume method. Velocity field profiles, streamlines and vortex sizes were analyzed for several geometries, varying the number of blades from 6 to 12 and others. A comparison was also conducted to evaluate the effect of the number of stirring mobiles used to mix the fluid (single stage, two stages and three stages), as well as the influence of the spacing ratio between the different stirrers. Finally, our numerical simulation procedure was validated through comparing the results obtained with experimental work available in the literature, showing good agreement between the different approaches.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
Z. Driss, in Procedings of the International Conference on Advances in Mechanical Engineering and Mechanics, Hammamet, Tunisia, 2006, pp. 1–6 (https://dx.doi.org/10.15866/irease.v7i3.3729)
L. Li, B. Xu, Chem. Papers 71 (2017) 1863 (https://dx.doi.org/10.1007/s11696-017-0180-1)
Y. Cui, H. Zhang, X. Li, M. Yang, Z. Guan, Int. J. Agric. Biol. Eng. 11 (2018) 111 (https://dx.doi.org/10.25165/j.ijabe.20181104.2729)
M. Jaszczur, A. Młynarczykowska, L. Demurtas Energies 13(3) (2020) 640 (https://dx.doi.org/10.3390/en13030640)
F. L. Yang, S. J. Zhou, C. X. Zhang, Korean J. Chem. Eng. 32 (2015) 816 (https://doi.org/10.1007/s11814-014-0255-4)
L. Liangchao, C. Ning, X. Kefeng, X. Beiping, Int. J. Chem. React. Eng. 17 (2019) 20180215 (https://doi.org/10.1515/ijcre-2018-0215)
M. Kordas, G. Story, M. Konopacki, R. Rakoczy, Ind. Eng. Chem. Res. 52 (2013) 13818 (https://doi.org/10.1021/ie303086r)
H. Ameur, Y. Kamla, Instal 6 (2020) 42 (https://doi.org/10.36119/15.2020.6.5)
Y. Kamla, H. Ameur, M. I. Arab, B. Azeddine, Data Brief 39 (2021) 107669 (https://doi.org/10.1016/j.dib.2021.107669)
X. Dang, J. Guo, L.Yang, S. Xue, B. Ai, X. Li, L. Chen, W. Li, H. Qin, J. Zhang, J. Taiwan Inst. Chem. Eng. 131 (2022) 104 (https://doi.org/10.1016/j.jtice.2021.11.016)
S. Youcefi, A. Mokhefi, M. Bouzit, A. Youcefi, Int. J. Heat Tech. 41 (2023) 1489 (https://doi.org/10.18280/ijht.410611)
S. Bonnot, F. Cabaret, L. Fradette, P. A. Tanguy, Chem. Eng. Res. Des. 85 (2007) 1129 (https://doi.org/10.1205/cherd06215)
N. Hashemi, F. Ein-Mozaffari, S. R. Upreti, D. K. Hwang, Chem. Eng. Sci. 151 (2016) 25 (https://doi.org/10.1016/j.ces.2016.05.003)
C. Yang, J. Yao, X. Chen, M. Xie, G. Zhou, Z. Xu, B. Liu, Chem. Eng. Res. Des. 202 (2024) 377 (https://doi.org/10.1016/j.cherd.2023.12.040
H. H. Mortensen, F. Innings, A. Håkansson, Chem. Eng. Res. Des. 121 (2017) 245 (https://doi.org/10.1016/j.cherd.2017.03.016)
S. M. Mahmoudi, M. Yianneskis, in Fluid Mechanics of Mixing. Modelling, Operations and Experimental Techniques, R. King, Ed., Springer, Dordrecht, 1992, pp. 11–18 (https://doi.org/10.1007/978-94-015-7973-5_2)
K. Rutherford, K. C. Lee, S. M. M. Mahmoudi, M. Yianneskis, AIChE 42 (1996) 332 (https://doi.org/10.1002/aic.690420204)
A. W. Nienow, Chem. Eng. Sci. 52 (1997) 2557 (https://doi.org/10.1016/S0009-2509(97)00072-9)
P. M. Armenante, Y. T. Huang, T. Li, Chem. Eng. Sci. 47 (1992) 2865 (https://doi.org/10.1016/0009-2509(92)87143-E)
G. Montante, A. Brucato, K. C. Lee, M. Yianneskis, Canadian J. Chem. Eng. 77 (2009) 649 (https://doi.org/10.1002/cjce.5450770405)
A. Hadjeb, M. Bouzit, Y. Kamla, H. Ameur, Green Sci. 19 (2017) 83 (https://doi.org/10.1515/pjct-2017-0053)
S. Dabiri, A. Noorpoor, M. Arfaee, P. Kumar, W. Rauch, Water (Switzerland) 14 (2021) 105 (https://doi.org/10.3390/w13121629)
A. Reid, R. Rossi, C. Cottini, A. Benassi, Meccanica 15 (2024) 1 (https://doi.org/10.1007/s11012-024-01824-z)
H. Wu, G. K. Patterson, Chem. Eng. Sci. 44 (1989) 2207 (https://doi.org/10.1016/0009-2509(89)85155-3)
Z. Driss, A. Kaffel, B. B. Amira, G. Bouzgarrou, M. S. Abid, Am. J. Energy Res. 2 (2014) 67 (https://doi.org/10.12691/ajer-2-3-4)
D. A. Deglon, C. J. Meyer, Minerals Eng. 19 (2006) 1059 (https://doi.org/10.1016/j.mineng.2006.04.001)
C. D. Tacǎ, M. Pǎunescu, Chem. Eng. Sci. 56 (2001) 4445 (https://doi.org/10.1016/S0009-2509(01)00096-3)
J. Karcz, M. Major, Chem. Eng. Process. Proc. Intens. 37 (1998) 249 (https://doi.org/10.1016/S0255-2701(98)00033-6).