Removal of Pb(II), Cd(II), and Zn(II) from landfill soil and leachate using a graphene oxide membrane

Main Article Content

Dragana Stević
https://orcid.org/0000-0002-2237-2652
Sunčica Sukur
https://orcid.org/0000-0003-1116-3860
Radovan Kukobat
https://orcid.org/0000-0003-4620-9451
Suzana Gotovac Atlagic
https://orcid.org/0000-0002-9667-9884
Predrag Ilić
https://orcid.org/0000-0002-0316-5615
Francesco Sirio Fumagalli
Andrea Valsesia
Pascal Colpo
https://orcid.org/0000-0002-8052-0000
Svetlana Popović
https://orcid.org/0000-0001-5494-7935

Abstract

Since rainwater extracts toxic metals from landfills, creating harmful leachate, developing methods to remove these metals is necessary. This work presents a method of toxic metal ions removal from a loam-type soil consisting of washing the soil with a mild washing agent to extract toxic metals in a leachate, and a purification of the leachate by filtering it through a synthesized graphene oxide (GO) membrane. As washing agents, the pure water and a mild solution of HCl (0.01 M) were tested. The GO membrane was synthesized using natural Madagascar graphite. The solution of HCl showed a significantly higher washing efficiency of Zn(II), Cd(II), and Pb(II) cations than pure water due to its acidic nature. An intrinsic GO membrane with an interlayer distance of 0.68–0.74 nm (before and after filtration) and a thickness of ~0.70 µm yielded rejections of 99.80%, 96.15%, and 44.00% for Pb(II), Cd(II) and Zn(II) ions, respectively. Molecular dynamics simulation showed that ions are retained in the GO interfaces due to the narrow interlayer distance, leading to membrane fouling. Nevertheless, the high rejections of Pb(II) and Cd(II) support the possibility of purifying landfill soil leachate by the GO membrane.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
D. Stević, “Removal of Pb(II), Cd(II), and Zn(II) from landfill soil and leachate using a graphene oxide membrane”, J. Serb. Chem. Soc., Nov. 2025.
Section
Environmental Chemistry

References

G. Ondrasek, J. Shepherd, S. Rathod, R. Dharavath, M. I. Rashid, M. Brtnicky, M. S. Shahid, J. Horvatinec, Z. Rengel, RSC Adv. 15 (2025) 3904–3927 (https://doi.org/10.1039/D4RA04639K)

D. Hou, X. Jia, L. Wang, S. P. McGrath, Y.-G. Zhu, Q. Hu, F.-J. Zhao, M.-S. Bank, D. O’Connor, J. Nriagu, Science 388 (2025) 316–321 (https://doi.org/10.1126/science.adr5214)

S. Sahragard, R. Mostafaloo, F. Fanaei, S. Imanian, M. Dehabadi, A. Adibzadeh, N. Nasseh, Avicenna J. Environ. Health Eng. 11 (2024) 115–125 (https://doi.org/10.34172/ajehe.5467)

S. M. Hosseini Beinabaj, H. Heydariyan, H. Mohammad Aleii, A. Hosseinzadeh, Heliyon 9 (2023) e13017 (https://doi.org/10.1016/j.heliyon.2023.e13017)

X. Zhai, Z. Li, B. Huang, N. Luo, M. Huang, Q. Zhang, G. Zeng, Sci. Total Environ. 635 (2018) 92–99 (https://doi.org/10.1016/j.scitotenv.2018.04.119)

K. N. B. Armel, B. B. B. Emile, A. K. Daniel, J. Geosci. Environ. Prot. 10 (2022) 151–172 (https://doi.org/10.4236/gep.2022.101011)

M.-S. Kim, N. Koo, J.-G. Kim, S.-H. Lee, Appl. Sci. 11 (2021) 6398 (https://doi.org/10.3390/app11146398)

K. Cho, E. Myung, H. Kim, C. Park, N. Choi, C. Park, Int. J. Environ. Res. Public. Health 17 (2020) 3133 (https://doi.org/10.3390/ijerph17093133)

S. P. Bera, M. Godhaniya, C. Kothari, J. Basic Microbiol. 62 (2022) 245–259 (https://doi.org/10.1002/jobm.202100259)

G. Liu, W. Jin, N. Xu, Chem. Soc. Rev. 44 (2015) 5016–5030 (https://doi.org/10.1039/C4CS00423J)

W. Jin, G. Liu, N. Xu, Organic-Inorganic Composite Membranes for Molecular Separation; Series on Chemical Engineering; WORLD SCIENTIFIC (EUROPE), 2017; Vol. 05. (https://doi.org/10.1142/q0084)

F. A. Janjhi, D. Janwery, I. Chandio, S. Ullah, F. Rehman, A. A. Memon, J. Hakami, F. Khan, G. Boczkaj, K. H. Thebo, ChemBioEng Rev. 9 (2022) 574–590 (https://doi.org/10.1002/cben.202200015)

A. Jeffers, A. Soil Texture Analysis “The Jar Test.” https://hgic.clemson.edu/factsheet/soil-texture-analysis-the-jar-test/.

E. J. Coopersmith, B. S. Minsker, M. Sivapalan, Hydrol. Earth Syst. Sci. 18 (2014) 3095–3107 (https://doi.org/10.5194/hess-18-3095-2014)

Z. Rengel, Soil pH, Soil Health and Climate Change. In Soil Health and Climate Change; B.P. Singh, A. L. Cowie, K. Y. Chan, K. Y., Eds.; Soil Biology; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; Vol. 29, pp 69–85 (https://doi.org/10.1007/978-3-642-20256-8_4)

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 4 (2010) 4806–4814 (https://doi.org/10.1021/nn1006368)

R. J. Jiménez Riobóo, E. Climent-Pascual, X. Díez-Betriu, F. Jiménez-Villacorta, C. Prieto, A. De Andrés, J. Mater. Chem. C 3 (2015) 4868–4875 (https://doi.org/10.1039/C4TC02883J)

A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. In 'T Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plimpton, Comput. Phys. Commun. 271 (2022) 108171 (https://doi.org/10.1016/j.cpc.2021.108171)

P. Mark, L. Nilsson, J. Phys. Chem. A 105 (2001) 9954–9960 (https://doi.org/10.1021/jp003020w)

A. P. Rawat, V. Kumar, P. Singh, A. C. Shukla, D. P. Singh, Soil Sediment Contam. Int. J. 31 (2022) 15–39 (https://doi.org/10.1080/15320383.2021.1900071)

Z. Liu, W. Liu, X. Xie, W. Zhao, Y. Wen, Q. Wang, B. Ou, IOP Conf. Ser. Earth Environ. Sci. 252 (2019) 022022 (https://doi.org/10.1088/1755-1315/252/2/022022)

W. H. Bragg, W. L. Bragg, Proc. R. Soc. Lond. A 88 (1913) 428–438 (https://doi.org/10.1098/rspa.1913.0040)

B. Lee, K. Li, H. S. Yoon, J. Yoon, Y. Mok, Y. Lee, H. H. Lee, Y. H. Kim, Sci. Rep. 6 (2016) 28052 (https://doi.org/10.1038/srep28052)

M. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, Carbon 53 (2013) 38–49 (https://doi.org/10.1016/j.carbon.2012.10.013)

C. Ogata, M. Koinuma, K. Hatakeyama, H. Tateishi, M. Z. Asrori, T. Taniguchi, A. Funatsu, Y. Matsumoto, Sci. Rep. 4 (2014) 3647 (https://doi.org/10.1038/srep03647)

P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Van Den Brink, P. J. Kelly, Phys. Rev. B 79 (2009) 195425 (https://doi.org/10.1103/PhysRevB.79.195425)

R. Kukobat, M. Sakai, H. Tanaka, H. Otsuka, F. Vallejos-Burgos, C. Lastoskie, M. Matsukata, Y. Sasaki, K. Yoshida, T. Hayashi, K. Kaneko, Sci. Adv. 8 (2022) eabl3521 (https://doi.org/10.1126/sciadv.abl3521)

B. Mi, Science 343 (2014) 740–742 (https://doi.org/10.1126/science.1250247).