Removal of Pb(II), Cd(II), and Zn(II) from landfill soil and leachate using a graphene oxide membrane
Main Article Content
Abstract
Since rainwater extracts toxic metals from landfills, creating harmful leachate, developing methods to remove these metals is necessary. This work presents a method of toxic metal ions removal from a loam-type soil consisting of washing the soil with a mild washing agent to extract toxic metals in a leachate, and a purification of the leachate by filtering it through a synthesized graphene oxide (GO) membrane. As washing agents, the pure water and a mild solution of HCl (0.01 M) were tested. The GO membrane was synthesized using natural Madagascar graphite. The solution of HCl showed a significantly higher washing efficiency of Zn(II), Cd(II), and Pb(II) cations than pure water due to its acidic nature. An intrinsic GO membrane with an interlayer distance of 0.68–0.74 nm (before and after filtration) and a thickness of ~0.70 µm yielded rejections of 99.80%, 96.15%, and 44.00% for Pb(II), Cd(II) and Zn(II) ions, respectively. Molecular dynamics simulation showed that ions are retained in the GO interfaces due to the narrow interlayer distance, leading to membrane fouling. Nevertheless, the high rejections of Pb(II) and Cd(II) support the possibility of purifying landfill soil leachate by the GO membrane.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Horizon 2020 Framework Programme
Grant numbers 101007417 -
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja,Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-65/2024-03/200134
References
G. Ondrasek, J. Shepherd, S. Rathod, R. Dharavath, M. I. Rashid, M. Brtnicky, M. S. Shahid, J. Horvatinec, Z. Rengel, RSC Adv. 15 (2025) 3904–3927 (https://doi.org/10.1039/D4RA04639K)
D. Hou, X. Jia, L. Wang, S. P. McGrath, Y.-G. Zhu, Q. Hu, F.-J. Zhao, M.-S. Bank, D. O’Connor, J. Nriagu, Science 388 (2025) 316–321 (https://doi.org/10.1126/science.adr5214)
S. Sahragard, R. Mostafaloo, F. Fanaei, S. Imanian, M. Dehabadi, A. Adibzadeh, N. Nasseh, Avicenna J. Environ. Health Eng. 11 (2024) 115–125 (https://doi.org/10.34172/ajehe.5467)
S. M. Hosseini Beinabaj, H. Heydariyan, H. Mohammad Aleii, A. Hosseinzadeh, Heliyon 9 (2023) e13017 (https://doi.org/10.1016/j.heliyon.2023.e13017)
X. Zhai, Z. Li, B. Huang, N. Luo, M. Huang, Q. Zhang, G. Zeng, Sci. Total Environ. 635 (2018) 92–99 (https://doi.org/10.1016/j.scitotenv.2018.04.119)
K. N. B. Armel, B. B. B. Emile, A. K. Daniel, J. Geosci. Environ. Prot. 10 (2022) 151–172 (https://doi.org/10.4236/gep.2022.101011)
M.-S. Kim, N. Koo, J.-G. Kim, S.-H. Lee, Appl. Sci. 11 (2021) 6398 (https://doi.org/10.3390/app11146398)
K. Cho, E. Myung, H. Kim, C. Park, N. Choi, C. Park, Int. J. Environ. Res. Public. Health 17 (2020) 3133 (https://doi.org/10.3390/ijerph17093133)
S. P. Bera, M. Godhaniya, C. Kothari, J. Basic Microbiol. 62 (2022) 245–259 (https://doi.org/10.1002/jobm.202100259)
G. Liu, W. Jin, N. Xu, Chem. Soc. Rev. 44 (2015) 5016–5030 (https://doi.org/10.1039/C4CS00423J)
W. Jin, G. Liu, N. Xu, Organic-Inorganic Composite Membranes for Molecular Separation; Series on Chemical Engineering; WORLD SCIENTIFIC (EUROPE), 2017; Vol. 05. (https://doi.org/10.1142/q0084)
F. A. Janjhi, D. Janwery, I. Chandio, S. Ullah, F. Rehman, A. A. Memon, J. Hakami, F. Khan, G. Boczkaj, K. H. Thebo, ChemBioEng Rev. 9 (2022) 574–590 (https://doi.org/10.1002/cben.202200015)
A. Jeffers, A. Soil Texture Analysis “The Jar Test.” https://hgic.clemson.edu/factsheet/soil-texture-analysis-the-jar-test/.
E. J. Coopersmith, B. S. Minsker, M. Sivapalan, Hydrol. Earth Syst. Sci. 18 (2014) 3095–3107 (https://doi.org/10.5194/hess-18-3095-2014)
Z. Rengel, Soil pH, Soil Health and Climate Change. In Soil Health and Climate Change; B.P. Singh, A. L. Cowie, K. Y. Chan, K. Y., Eds.; Soil Biology; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; Vol. 29, pp 69–85 (https://doi.org/10.1007/978-3-642-20256-8_4)
D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 4 (2010) 4806–4814 (https://doi.org/10.1021/nn1006368)
R. J. Jiménez Riobóo, E. Climent-Pascual, X. Díez-Betriu, F. Jiménez-Villacorta, C. Prieto, A. De Andrés, J. Mater. Chem. C 3 (2015) 4868–4875 (https://doi.org/10.1039/C4TC02883J)
A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. In 'T Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plimpton, Comput. Phys. Commun. 271 (2022) 108171 (https://doi.org/10.1016/j.cpc.2021.108171)
P. Mark, L. Nilsson, J. Phys. Chem. A 105 (2001) 9954–9960 (https://doi.org/10.1021/jp003020w)
A. P. Rawat, V. Kumar, P. Singh, A. C. Shukla, D. P. Singh, Soil Sediment Contam. Int. J. 31 (2022) 15–39 (https://doi.org/10.1080/15320383.2021.1900071)
Z. Liu, W. Liu, X. Xie, W. Zhao, Y. Wen, Q. Wang, B. Ou, IOP Conf. Ser. Earth Environ. Sci. 252 (2019) 022022 (https://doi.org/10.1088/1755-1315/252/2/022022)
W. H. Bragg, W. L. Bragg, Proc. R. Soc. Lond. A 88 (1913) 428–438 (https://doi.org/10.1098/rspa.1913.0040)
B. Lee, K. Li, H. S. Yoon, J. Yoon, Y. Mok, Y. Lee, H. H. Lee, Y. H. Kim, Sci. Rep. 6 (2016) 28052 (https://doi.org/10.1038/srep28052)
M. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, Carbon 53 (2013) 38–49 (https://doi.org/10.1016/j.carbon.2012.10.013)
C. Ogata, M. Koinuma, K. Hatakeyama, H. Tateishi, M. Z. Asrori, T. Taniguchi, A. Funatsu, Y. Matsumoto, Sci. Rep. 4 (2014) 3647 (https://doi.org/10.1038/srep03647)
P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Van Den Brink, P. J. Kelly, Phys. Rev. B 79 (2009) 195425 (https://doi.org/10.1103/PhysRevB.79.195425)
R. Kukobat, M. Sakai, H. Tanaka, H. Otsuka, F. Vallejos-Burgos, C. Lastoskie, M. Matsukata, Y. Sasaki, K. Yoshida, T. Hayashi, K. Kaneko, Sci. Adv. 8 (2022) eabl3521 (https://doi.org/10.1126/sciadv.abl3521)
B. Mi, Science 343 (2014) 740–742 (https://doi.org/10.1126/science.1250247).