A novel Zn(Ⅱ) coordination compound exhibits selective and sensitive detection of Fe3+ and acetylacetone Scientific paper

Main Article Content

Rui Dai
https://orcid.org/0009-0008-4710-9579
YueTong Wang
https://orcid.org/0009-0000-6423-4808
Hua Zhang
Zhiguo Kong
https://orcid.org/0000-0003-4133-2055

Abstract

Pyridine derivatives have strong coordination ability, tunable elec­tronic, optical properties and excellent stability as ligands. Their substituent engineering and conjugation extension provides an ideal platform for the con­struction of efficient fluorescent probes, catalysts and biological functional mat­erials. Based on this, a new coordination compound [Zn(phen)(L)(H2O)]·4H2O was synthesized under solvothermal conditions used 1,10-phenanthroline (phen), 3-carboxy-1-carboxymethyl-2-oxidopyridinium (H2L) and Zn(Ⅱ). The crystal structure and composition of the coordination compound were con­firmed by single crystal X-ray diffraction and thermogravimetric analysis. Structural analysis confirmed by single crystal X-ray diffraction reveals its unique coordination geometry. In addition, it exhibits significant luminescence, making it a candidate for sensing applications. The luminescence and sensing properties of the coordination compound were investigated in detail. The Ksv values for the detection of Fe3+ and acac were found to be 3.29×10 5 and 6.67×105 M-1, which confirmed the high and efficient sensing ability of the syn­thesized sensor.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
R. Dai, Y. Wang, H. Zhang, and Z. Kong, “A novel Zn(Ⅱ) coordination compound exhibits selective and sensitive detection of Fe3+ and acetylacetone: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 11, pp. 1303–1315, Nov. 2025.
Section
Inorganic Chemistry
Author Biography

Rui Dai, Department of Chemistry, Jilin Normal University, Siping 136000, China

Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, China

Funding data

References

M. S. Wang, X. T. Liu, B. C. Pan, S. J. Zhang, Chemosphere 93 (2013) 2877 (https://doi.org/10.1016/j.chemosphere.2013.08.082)

S. Yao, H. Xu, T. Zheng, Y. Li, H. Huang, J. Wang, J. Chen, S. Liu, H. Wen, Chin. Chem. Lett. 34.4 (2023) 107532 https://doi.org/10.1016/j.cclet.2022.05.046

Y. N. Wang, H. Xu, S. D. Wang, R. Y. Mao, L. M. Wen, S. Y. Wang, L. J. Liu, Y. Sun, S. Q. Liu, F. Wang, Q. F. Yang, Spectrochim. Acta, A 286 (2023) 121952 (https://doi.org/10.1016/j.saa.2022.121952)

X. Zhang, X. Zhuang, N. Zhang, C. Ge, X. Luo, J. Li, J. Wu, Q. Yang, R. Liu, CrystEngComm 21 (2019) 1948 (https://doi.org/10.1039/c9ce00068b)

W. Liu, H. Cui, J. Zhou, X. Chen, H. Yang, J. Wang, J. Mol. Struct. 1302 (2024) 137468 (https://doi.org/10.1016/j.molstruc.2023.137468)

L. L. Liu, H. W. Zhang, J. Y. Ren, L. Wang, Y. Zhang, Spectrochim. Acta, A 331 (2025) 125762 (https://doi.org/10.1016/j.saa.2025.125762)

Z. ul Nisa, M. Ahmad, H. N. Sheikh, New J. Chem. 48 (2024) 3100 (https://doi.org/10.1039/D3NJ05433K)

B. Zhao, J. Lu, H. Liu, S. Li, Q. Sun, B. Zhang, CrystEngComm 26 (2024) 1319 (https://doi.org/10.1039/D3CE01174G)

Á. González-Domínguez, F. M. Visiedo-García, J. Domínguez-Riscart, R. González-

-Domínguez, R. M. Mateos, A. M. Lechuga-Sancho, Int. J. Mol. Sci. 21 (2020) 5529 (https://doi.org/10.3390/ijms21155529)

J. B. Araškov, A. Višnjevac, J. Popović, V. Blagojević, H. S. Fernandes, S. F. Sousa, I. Novaković, J. M. Padrón, B. B. Holló, M. Monge, M. Rodríguez-Castill, CrystEngComm 24.29 (2022) 5194 (https://doi.org/10.1039/D2CE00443G)

C. Bizzarri, E. Spuling, D. M. Knoll, D. Volz, S. Bräse, Coord. Chem. Rev. 373 (2018) 49 (https://doi.org/10.1016/j.ccr.2017.09.011)

P. Ristić, T. R. Todorovic, V. Blagojević, O. R. Klisuric, I. Marjanovic, B. B. Holló, P. Vulic, M. Gulea, M. Donnard, M. Monge, M. Rodríguez-Castillo, Cryst. Growth Des. 20 (2020) 4461 (https://doi.org/10.1021/acs.cgd.0c00287)

R. A. Khan, A. AlFawaz, I. Hasan, N. A. AlMuryyi, A. A. Alhamed, S. Laeeq, A. Alsalme, New J. Chem. 48 (2024) 1287 (https://doi.org/10.1039/D3NJ04709A)

J. Suebphanpho, J. Boonmak, RSC Adv. 14 (2024) 9781 (https://doi.org/10.1039/D4RA00500G)

G.M. Otero-Fuentes, V. Sánchez-Mendieta, A. Sánchez-Ruiz, R. A. Morales-Luckie, D. Martínez-Otero, J. Jaramillo-García, A. Dorazco-González, J. Fluoresc. 35 (2024) 3449 (https://doi.org/10.1007/s10895-024-03754-1)

K. X. Ma, Y. Y. Yuan, Y. T. Ren, Y. Yang, H. G. Hao, J. Lu, S. N. Wang, ACS Appl. Nano Mater. 7 (2024) 19448 (https://doi.org/10.1021/acsanm.4c03335)

M. T. Seuffert, A. E. Sedykh, T. C. Schäfer, J. Becker, K. Müller-Buschbaum, Dalton Trans. 54 (2025) 5075 (https://doi.org/10.1039/D4DT03149K)

M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, G. Polidori, J. Appl. Crystallogr. 48 (2025) 306 (https://doi.org/10.1107/S1600576715001132)

G. M. Sheldrick, Cryst. Struct. Chem. 71 (2015) 3 (https://dx.doi.org/10.1107/S2053229614024218)

W. Liu, H. Cui, J. Zhou, X. Chen, H. Yang, J. Wang, J. Mol. Struct. 1302 (2024) 137468 (https://doi.org/10.1016/j.molstruc.2023.137468)

H. Wang, S. Li, H. Zhang, B. Su, X. Wang, Main Group Met. Chem. 48 (2025) 20240029 (https://doi.org/10.1515/mgmc-2024-0029)

X. Li, Y. Huang, B. Liu, X. Wang, Main Group Met. Chem. 48 (2025) 20240013 (https://doi.org/10.1515/mgmc-2024-0013)

Y. Hanifehpour, B. Mirtamizdoust, J. Dadashi, R. Wang, M. Rezaei, M. Abdolmaleki, S. W. Joo, Crystals 12 (2022) 113 (https://doi.org/10.3390/cryst12010113)

L. Gao, C. Jiao, H. Chai, Y. Ren, G. Zhang, H. Yu, L. Tang, 284 (2020) 121199, J. Solid State Chem. 284 (2020) 121199 (https://doi.org/10.1016/j.jssc.2020.121199).