Fabrication of visible-light photoactive TiO2/BiVO4 composite for photocatalytic degradation of ciprofloxacin
Main Article Content
Abstract
Pure BiVO4 and three TiO2/BiVO4 composite photocatalysts with Bi3+: Ti4+ molar ratios of 1:1, 2:1, and 4:1 were readily synthesized for the first time using a one-pot hydrothermal procedure for the photodegradation of ciprofloxacin. Conducting the hydrothermal reaction in a basic medium yielded single-phase scheelite monoclinic polymorphic BiVO4 (ms-BiVO4) in the composite samples. Microstructural analysis showed spherical TiO2 nanoparticles with an average grain size of 120 nm embedded on the surface of BiVO4 nanoplates. The optimized composite exhibited a ciprofloxacin photodegradation reaction rate constant was about 3.8 times higher than that of the pure BiVO4 sample. This significant enhancement is attributed to the formation of a TiO2/BiVO4 heterojunction, which promotes efficient charge separation. This research expands the knowledge on designing of BiVO4-rich composites (with Bi3+:Ti4+ molar ratio ³ 1:1) via heterogeneous junction engineering to enhance photocatalytic activity beyond that of pure BiVO4. This research also provided a perspective on using the BiVO4-rich composites as effective photocatalysts as degradation of antibiotics in aqueous media under visible-light irradiation.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministry of Science and Technology
Grant numbers ĐTĐL.CN-47/21
References
V. Homem, L. Santos, J. Environ. Manage. 92 (2011) 2304 (https://doi.org/10.1016/j.jenvman.2011.05.023)
C. Yan, Y. Yang, J. Zhou, M. Liu, M. Nie, H. Shi, L. Gu, Environ. Pollut. 175 (2013) 22 (https://doi.org/10.1016/j.envpol.2012.12.008)
C. S. Lundborg, A. Tamhankar, BMJ. 358 (2017) j2440 (https://doi.org/10.1136/bmj.j2440)
Organization, W.H., Pharmaceuticals in drinking-water, World Health Organization, Geneva, 2012, 35p. (https://apps.who.int/iris/handle/10665/44630)
S. Babić, M. Periša, I. Škorić, Chemosphere. 91 (2013) 1635 (https://doi.org/10.1016/j.chemosphere.2012.12.072)
J. Porras, C. Badoya, J. Silva-Agredo, A. Santamaría, J. J. Fernández, R. A. Torres-Palma, Water Res. 94 (2016) 1 (https://doi.org/10.1016/j.watres.2016.02.024)
Z. Wei, J. Liu, W. Shangguan, Chinese J. Catal. 41 (2020) 1440 (https://doi.org/10.1016/S1872-2067(19)63448-0)
K. Košutić, D. Dolar, D. Ašperger, B. Kunst, Sep. Purif. 53 (2007) 244 (https://doi.org/10.1016/j.seppur.2006.07.015)
C. A. Igwegbe, S. N. Oba, C. O. Aniagor, A. G. Adeniyi, Ind. Eng. Chem. Res. 93 (2021) 57 (https://doi.org/10.1016/j.jiec.2020.09.023)
M. N. Chong, B. Jin, C. W. K. Chow, C. Saint, Water Res. 44 (2010) 2997 (https://doi.org/10.1016/j.watres.2010.02.039)
S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, J. Sun, RSC Adv. 5 (2015) 14610 (https://doi.org/10.1039/C4RA13734E)
W. S. Koe, J. W. Lee, W. C. Chong, Y. L. Pang, L. C. Sim, Environ. Sci. Pollut. 27 (2020) 2522 (https://doi.org/10.1007/s11356-019-07193-5)
S. Zhu, D. Wang, Adv. Energy Mater. 7 (2017) 1700841 (https://doi.org/10.1002/aenm.201700841)
A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, Appl. Catal. A: Gen. 555 (2018) 47 (https://doi.org/10.1016/j.apcata.2018.02.010)
M. Guo, Q. He, A. Wang, W. Wang, Z. Fu, Cryst. 6 (2016) 81 (https://doi.org/10.3390/cryst6070081)
O. Monfort, G. Plesch, Environ. Sci. Pollut. 25 (2018) 19362 (https://doi.org/10.1007/s11356-018-2437-9)
H. L. Tan, R. Amal, Y. H. Ng, J. Mater. Chem. A 5 (2017) 16498 (https://doi.org/10.1039/C7TA04441K)
Y. Li, D. Liao, T. Li, W. Zhong, X. Wang, X. Hong, H. Yu, J. Colloid Interface Sci. 570 (2020) 232 (https://doi.org/10.1016/j.jcis.2020.02.093)
S. Obregón, G. Colón, RSC Adv. 4 (2014) 6920 (https://doi.org/10.1039/c3ra46603e)
X.-J. Wen C. G. Niu, L. Zhang, C. Liang, H. Guo, G. M. Zeng, J. Catal. 358 (2018) 141 (https://doi.org/10.1016/j.jcat.2017.11.029)
B. Zhang, H. Zhang, Z. Wang, X. Zhang, X. Qin, Y. Dai, Y. Liu, P. Wang, Y. Li, B. Huang, Appl. Catal. 211 (2017) 258 (https://doi.org/10.1016/j.apcatb.2017.03.078)
D. B. Hernández-Uresti, C. Alanis-Moreno, D. Sanchez-Martinez, Mater. Sci. Semicond. 102 (2019) 104585 (https://doi.org/10.1016/j.mssp.2019.104585)
K. Pingmuang, J. Chen, W. Kangwansupamonkon, G. G. Wallace, Sukon Phanichphant, A. Nattestad, Sci. Rep., 7 (2017) 8929 (https://doi.org/10.1038/s41598-017-09514-5)
Z. Ye, X. Xiao, J. Chen, Y. Wang, Photochem. Photobiol. A: Chem., 368 (2018) 153 (https://doi.org/10.1016/j.jphotochem.2018.09.044).
J. Yang, Q. Shi, R. Zhang, M. Xie, X. Jiang, F. Wang, X. Cheng, W. Han, Carbon, 138 (2018) 118 (https://doi.org/10.1016/j.carbon.2018.06.003)
Y. Hu, W. Chen, J. Fu, M. Ba, F. Sun, P. Zhang, J. Zou, App. Surf. Sci., 436 (2018) 319 (https://doi.org/10.1016/j.apsusc.2017.12.054)
W. Li, Z. Wang, D. Kong, D. Du, M. Zhou, Y. Du, T. Yan, J. You, D. Kong, J. Alloys Compd., 688 (2016) 703 (http://dx.doi.org/10.1016/j.jallcom.2016.07.249)
Y.-R. Lv, C.-J. Liu, R.-K. He, X. Li, Y.-H. Xu, Mater. Res. Bull., 117 (2019) 35 (https://doi.org/10.1016/j.materresbull.2019.04.032)
K. T. Drisya, M. Solís-López, J. J. Ríos-Ramírez, J. C. Durán-Álvarez, A. Rousseau, S. Velumani, R. Asomoza, A. Kassiba, A. Jantrania, H. Castaneda, Sci. Rep. 10 (2020) 13507 (https://doi.org/10.1038/s41598-020-69032-9)
G, Longo, F. Fresno, S. Gross, U. L. Štangar, Environ. Sci. Pollut. Res. 21 (2014) 11189 (https://doi.org/10.1007/s11356-014-2624-2)
S. Okunaka, H. Tokudome, Y. Hitomi, R. Abe, J. Mater. Chem. A 4 (2016) 3926 (https://doi.org/10.1039/C5TA09789D)
Y. Zhou, G. Jiang, R. Wang, X. Wang, R. Hu, X. Xi, J. Fiber Bioeng. Inform. 5 (2012) 181 (https://doi.org/10.3993/jfbi06201207)
L. Zhang, G. Tan, S. Wei, H. Ren, A. Xia, Y. Luo, Ceram. Int. 39 (2013) 8597 (https://doi.org/10.1016/j.ceramint.2013.03.106)
D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, X. Wang, Nanomater. (Basel, Switzerland) 10 (2020) 546 (https://doi.org/10.3390/nano10030546).
M. Jiméenez-Salcedo, M. Monge, M. T. Tena, Chemosphere 247 (2020) 125910 (https://doi.org/10.1016/j.chemosphere.2020.125910)
T. Ahamad, M. Naushad, S. M. Alshehri, Chem. Eng. J. 417, (2021) 127969 (https://doi.org/10.1016/j.cej.2020.127969)
T. G. Vasconcelos, D. M. Henriques, A. König, A. F. Martins, K. Kümmerer, Chemosphere 76 (2009) 487–493 (https://doi.org/10.1016/j.chemosphere.2009.03.022)
Y. Kang, Y. Yang, L.-C. Yin, X. Kang, G. Liu, H.-M. Cheng, Adv. Mater. 27 (2015) 4572 (https://doi.org/10.1002/adma.201501939)
Nguyen Duc Van, Do Thi Anh Thu, Ngo Thi Hong Le, Doan Tuan Anh, Mater. Sci. Eng. B 278 (2022) 115616 (https://doi.org/10.1016/j.mseb.2022.115616)