DFT-guided prediction of singlet fission chromophores for high-efficiency organic solar cells
Main Article Content
Abstract
Theoretical design and DFT calculations were done to find new SF chromophores to be used in high efficiency organic solar cells. These included 6 new compounds which had boron, nitrogen, selenium, TIPS, and phenyl groups. All of these molecules demonstrated near planar geometries with extended pi-conjugation and had HOMO-LUMO gaps between 3.04 and 3.32 eV. The excitation energies for the singlet and triplet states were in the 2.11-2.25 eV and 1.00-1.10 eV, leading to singlet triplet energy gaps which ranged from 1.11-1.16 eV. All compounds met the critical energetic requirement for efficient singlet fission whereby ES1 > 2ET1 for all chromophores. Some selected derivatives like N1 and N4 were found to have ΔEST values of 1.15 eV and 1.14 eV respectively which are equal or greater than the benchmark value of pentacene which is 1.02 eV and diketopyrrolopyrrole which is 1.18 eV. Moreover, the new chromophores are expected to have greater absorption and thermal stability spectrum making them better suited for next generation organic solar cells. This study highlights the promise of heteroatom and functional group rational design for SF-active materials with advanced optoelectronic and device-engineering properties.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
C-H. Tsai, C-M. Lin, C-H. Kuei, Coatings 10 (2020) 237 (https://doi.org/10.3390/coatings10030237)
C. Lee, S. Lee, G-U. Kim, W.Lee, B. J.Kim, Chem. Rev. 119 (2019),8028 (https://doi.org/10.1021/acs.chemrev.9b00044)
G. Wang, F.S. Melkonyan, A. Facchetti, T. J. Marks, Ang. Chem. Int. Ed. 58 (2019) 4129 (https://doi.org/10.1002/anie.201808976)
L. Guguloth, K. Singh, V. S. Reddy Channu, K. Kumari, Appl. Surf. Sci. 540 (2021) 148266 (https://doi.org/10.1016/j.apsusc.2020.148266)
C. J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci. Organic Photovoltaics, Concepts and Realization, Springer Berlin, Heidelberg, 2003 (https://doi.org/10.1007/978-3-662-05187-0)
A. Armin, W. Li, O. J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T.Heumüller, C. Brabec P. Meredit, Adv. Energy Mat. 11 (2021) 2003570 (https://doi.org/10.1002/aenm.202003570)
R. Xu, Y. Jiang, F. Liu, G. Ran, K. Liu, W. Zhang, X. Zhu, Adv. Mat. 36 (2024) 2312101 (https://doi.org/10.1002/adma.202312101)
Z. Xu, X. Cao, Z. Yao, W. Zhao, W. Shi, X. Bi, Yu Li, Y.O. Guo, G. Li, G. Long, X. Wan, C. Li, Y. Chen. Ang. Chem. Int. Ed. 64 (2025) e202421289 (https://doi.org/10.1002/anie.202421289)
A. J. Baldacchino, M. I. Collins, M. P. Nielsen, T. W. Schmidt, D. R. McCamey, M. J. Y. Tayebjee, Chem. Phys. Rev. 3 (2022) 021304 (https://doi.org/10.1063/5.0080250)
D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. V. Voorhis, M. A. Baldo. Science 340 (2013) 334 (https://doi.org/10.1126/science.1232994)
T. Ullrich, D. Munz, D. M. Guldi, Chem. Soc. Rev. 50 (2021) 3485–3518 (https://doi.org/10.1039/D0CS01433H)
A. Rao, R.H. Friend, Nature Rev. Mat. 2 (2017) 17063 (https://doi.org/10.1038/natrevmats.2017.63)
G. B. Piland, C. J. Bardeen, J. Physi. Chem. Lett. 6 (2015) 1841 (https://doi.org/10.1021/acs.jpclett.5b00569)
X. Wang, S. Gao, Y. Luo, X. Liu, R. TomKaiji, Z. V. Chang, N. Marom, J. Phys. Chem. C 128 (2024) 7841 (https://doi.org/10.1021/acs.jpcc.4c01340)
A. J. Musser, J. Clark. Ann. Rev. Phys. Chem. 70 (2019) 323 (https://doi.org/10.1146/annurev-physchem-042018-052435)
E. Kumarasamy, S. N. Sanders, M. J. Y. Tayebjee, A. Asadpoordarvish, T. J. H. Hele, E. G. Fuemmeler, A. B. Pun, L. M. Yablon, J. Z. Low, D. W. Paley, J. C. Dean, B. Choi, G. D. Scholes, M. L. Steigerwald, N. Ananth, D. R. McCamey, M. Y. Sfeir, L. M. Campos, J. Am. Chem. Soc. 139 (2017) 12488 (https://doi.org/10.1021/jacs.7b05204)
B. Daiber, K. van den Hoven, M. H. Futscher, B. Ehrler, ACS Energy Lett. 6 (2021) 2800 (https://doi.org/10.1021/acsenergylett.1c00972)
D. Sun, G. H. Deng, B. Xu, E. Xu, X. Li, Y. Wu, Y. Qian, Y. Zhong, C. Nuckolls, A. R. Harutyunyan, H. L. Dai, G. Chen, H. Chen, Y. Rao, iScience 19 (2019) 1079 (https://doi.org/10.1016/j.isci.2019.08.053)
W. T. Goldthwaite, E. Lambertson, M. Gragg, D. Windemuller, J. E. Anthony, T. J. Zuehlsdorff, O. Ostroverkhova, J. Chem. Phys. 161 (2024) 194712 (https://doi.org/10.1063/5.0234494)
D. Casanova, Chem. Rev. 118 (2018) 7164 (https://doi.org/10.1021/acs.chemrev.7b00601)
P. M Zimmerman, F. Bell, D. Casanova, M. Head-Gordon, J. Am. Chem. Soc. 133 (2011) 19944 (https://doi.org/10.1021/ja208431r)
A. Jain, Y. Shin, K. A. Persson, Nature Rev. Mat. 1 (2016) 15004 (https://doi.org/10.1038/natrevmats.2015.4)
B. Huang, G.F. von Rudorff A. von Lilienfeld, Science 381 (2023)170 (https://doi.org/10.1126/science.abn3445)
M. Bursch, J. Mewes, A. Hansen, S. Grimme. Ang. Chem. Int. Ed. 61 (2022) e202205735 (https://doi.org/10.1002/anie.202205735)
B. Nowacki, H. Oh, C. Zanlorenzi, H. Jee, A. Baev, P. N. Prasad, Photonics. Macromolecules 46 (2013) 7158 (https://doi.org/10.1021/ma401731x)
L. Wang, L. Yin, W. Zhang, X. Zhu, M. Fujiki, J. Am. Chem. Soc. 139 (2017)13218 (https://doi.org/10.1021/jacs.7b07626)
S. Xu. Q. Yang, Y. Wan R. Chen, S. Wang, Y. Si, B. Yang, D. Liu, C. Zhenga, W. Huang, J. Mat. Chem. C 7 (2019) 9523 (https://doi.org/10.1039/C9TC03152A)
K. Miyata, F. S. Conrad-Burton, F. L. Geyer, X.Y. Zhu, Chem. Rev. 119 (2019) 4261 (https://doi.org/10.1021/acs.chemrev.8b00572)
B. S. Millicent, J. Michl, Ann. Rev. Phys. Chem. 64 (2013)361 (https://doi.org/10.1146/annurev-physchem-040412-110130)
N.N. Nyangiwe, Next Materials 8 (2025)100683 (https://doi.org/10.1016/j.nxmate.2025.100683)
B. M. El Amine, Yi Zhou, H. Li,Q. Wang, J. Xi, C. Zhao, Energies 16 (2023) 3895 (https://doi.org/10.3390/en16093895)
M. B. Smith, J. Michl, Chem. Rev. 110 (2010) 6891 (https://doi.org/10.1021/cr1002613)
T. Fujihara, S. Ando, M. Ueda. Org. Electron. 62 (2018) 302 (https://doi.org/10.1016/j.orgel.2018.08.034)
O. El Bakouri, J. R. Smith, H. Ottosson, J. Am. Chem. Soc. 142 (2020) 5602 (https://doi.org/10.1021/jacs.9b12435).