Enhanced photocatalytic performance of ZnO/Cu2O composite for the degradation of methylene blue under the synergy effect

Main Article Content

Hongying Li
https://orcid.org/0009-0001-6328-6910
Luwen Ma
https://orcid.org/0009-0009-0616-0236
Zhenyang Wu
https://orcid.org/0009-0001-2749-4421
Chengli Yao
https://orcid.org/0000-0003-4199-7153

Abstract

In order to investigate the catalytic degradation efficiency of ZnO/Cu2O composite, the nanocomposite was synthesized via one-pot method and the template of SDS. The crystal structure, microscopic morphology, chemical composition, specific surface area, pore size distribution and optical absorption property of the composite were characterized. Under the irradiation of xenon lamp, the photocatalytic performance of the composite was evaluated by degrading methylene blue (MB). The aforementioned characterization determined that the synthesized composite consisted of ZnO (hexagonal wurtzite) and Cu2O (cubic crystal). Due to the mediation of SDS template, the particles were nanoscale with uniform distribution of Cu, Zn, and O elements and contained abundant mesopores. The photo-response range of the composite expanded to the visible region because of the combination of ZnO and Cu2O. Degradation ratio of MB catalyzed by ZnO/Cu2O maintained about 92% within 100 minutes after five recycling, demonstrating promising potentiality for photocatalytic applications. The enhanced photocatalytic performance maybe related to the mediation of SDS during the preparation process and the synergy effect between ZnO and Cu2O.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
H. Li, L. Ma, Z. Wu, and C. Yao, “Enhanced photocatalytic performance of ZnO/Cu2O composite for the degradation of methylene blue under the synergy effect”, J. Serb. Chem. Soc., Jan. 2026.
Section
Inorganic Chemistry

References

C. Ashina, N. Pugazhenthiran, R. V. Mangalaraja, P. Sathishkumar, Renew. Sust. Energ. Rev. 214 (2025) 115490 (https://doi.org/10.1016/j.rser.2025.115490)

C. Vanlalhmingmawia, H. Moradi, Y. J. Kim, D. S. Kim, J. K. Yang, Chem. Eng. J. 509 (2025) 161335 (https://doi.org/10.1016/j.cej.2025.161335)

C. Q. Shen, X. Y. Li, B. Xue, D. J. Feng, Y. P. Liu, F. Yang, M. Y. Zhang, S. J. Li, Appl. Surf. Sci. 679 (2025) 161303 (https://doi.org/10.1016/j.apsusc.2024.161303)

H. Tu, B. H. Tian, Z. C. Zhao, R. J. Guo, Y. Wang, S. H. Chen, J. Wu, Water Res. X 28 (2025) 100315 (https://doi.org/10.1016/j.wroa.2025.100315)

M. Y. Areeshi, Luminescence 38 (2023) 1111 (https://doi.org/10.1002/bio.4432)

H. Y. Li, X. X. Liu, J. Q. Huang, W. J. Zhu, A. M. Ding, C. L. Yao, J. M. Zhu, Crystallogr. Rep. 67 (2022) 1231 (https://doi.org/10.1134/S1063774522070082)

H. Zhao, Z. H. Zhan, W. C. Li, N. Zhang, X. Ma, P. K. Yan, Y. J. Gao, H. L. Cong, Q. Zhang, J. Alloy. Compd. 1002 (2024) 175197 (https://doi.org/10.1016/j.jallcom.2024.175197)

L. Nadjia, A. Chakib, K. Mohamed, T. Mohamed, E. Abdelkader, Appl. Phys. A-Mater. 131 (2025) 154 (https://doi.org/10.1007/s00339-024-08223-x)

D. Xu, H. L. Ma, J. Clean. Prod. 313 (2021) 127758 (https://doi.org/10.1016/j.jclepro.2021.127758)

A. L. Yang, L. L. Wang, Curr. Nanosci. 18 (2022) 94 (https://doi.org/10.2174/1573413717666210129115305)

R. Rathinabala, R. Thamizselvi, D. Padmanabhan, S. F. Alshahateet, I. Fatimah, A. K. Sibhatu, G. K. Weldegebrieal, S. I. A. Razak, S. Sagadevan, Inorg. Chem. Commun. 143 (2022) 109783 (https://doi.org/10.1016/j.inoche.2022.109783)

P. Attri, S. Garg, J. K. Ratan, A. S. Giri, Korean J. Chem. Eng. 41 (2024) 3191 (https://doi.org/10.1007/s11814-024-00283-2)

J. K. Nie, X. J. Yu, Z. B. Liu, J. Zhang, Y. Ma, Y. Y. Chen, Q. G. Ji, N. N. Zhao, Z. Chang, J. Clean. Prod. 363 (2022) 132593 (https://doi.org/10.1016/j.jclepro.2022.132593)

T. Bekele, G. Mebratie, A. Girma, G. Alamnie, Colloids and Surfaces A.

X. J. Yu, Z. Y. Li, Z. B. Liu, K. Wang, Appl. Surf. Sci. 665 (2024) 160285 (https://doi.org/10.1016/j.apsusc.2024.160285)

P. Liang, W. Y. Yang, H. Y. Peng, S. H. Zhao, Molecules 29 (2024) 5584 (https://doi.org/10.3390/molecules29235584)

X. S. Wang, Y. D. Zhang, Q. C. Wang, B. Dong, Y. J. Wang, W. Feng, Sci. Eng. Compos. Mater. 26 (2019) 104 (https://doi.org/10.1515/secm-2018-0170)

X. S. Jiang, Q. B. Lin, M. Zhang, G. He, Z. Q. Sun, Nanoscale Res. Lett. 10 (2015) 30 (https://doi.org/10.1186/s11671-015-0755-0)

C. L. Yao, C. Chen, Y. J. Yuan, W. J. Zhu, W. Q. Tai, C. Ding, H. Y. Li, Cryst. Res. Technol. 59 (2024) 2300233 (https://doi.org/10.1002/crat.202300233)

M. Amano, K. Hashimoto, H. Shibata, J. Oleo. Sci. 71 (2022) 927 (https://doi.org/10.5650/jos.ess22061)

J. Cui, L. Ye, X. X. Chen, J. N. Li, B. Yang, M. Yang, Q. Yang, D. Q. Yun, S. D. Sun, Appl. Surf. Sci. 638 (2023) 158046 (https://doi.org/10.1016/j.apsusc.2023.158046)

A. Norouzi, A. Nezamzadeh-Ejhieh, Mater. Res. Bull. 164 (2023) 112237 (https://doi.org/10.1016/j.materresbull.2023.112237)

K. Chitalkar, D. Hase, S. Gurav, S. Musmade, R. Gaikar, M. Sillanpää, V. Murade, H. Aher, J. Inorg. Organomet. Polym. 35 (2025) 6961 (https://doi.org/10.1007/s10904-025-03705-8)

X. J. Yu, J. Zhang, J. Zhang, J. F. Niu, J. Zhao, Y. C. Wei, B. H. Yao, Chem. Eng. J. 374 (2019) 316 (https://doi.org/10.1016/j.cej.2019.05.177)

F. Liu, Y. L. Che, Q. W. Chai, M. F. Zhao, Y. Lv, H. Sun, Y. Q. Wang, J. Sun, C. C. Zhao, Environ. Sci. Pollut. R. 26 (2019) 25286 (https://doi.org/10.1007/s11356-019-05814-7)

Y. W. Lu, F. Yu, J. Hu, J. Liu, Appl Catal A-Gen 429 (2012) 48 (https://doi.org/10.1016/j.apcata.2012.04.005)

J. K. Nie, X. J. Yu, Z. B. Liu, Y. C. Wei, J. Zhang, N. N. Zhao, Z. Yu, B. H. Yao, Appl. Surf. Sci. 576 (2022) 151842 (https://doi.org/10.1016/j.apsusc.2021.151842)

J. K. Nie, X. J. Yu, Y. C. Wei, Z. B. Liu, J. Zhang, Z. Yu, Y. Ma, B. H. Yao, Process Saf. Environ. 170 (2023) 241 (https://doi.org/10.1016/j.psep.2022.12.002 )

T. Nesavi · L. Balu · R. Ezhil Pavai, Ionics 31 (2025) 12027 (https://doi.org/10.1007/s11581-025-06697-0)

J. H. Cao, L. P. Ding, W. T. Hu, X. L. Chen, X. Chen, Y. Fang, Langmuir 30 (2014) 15364 (https://doi.org/10.1021/la5039798)

C. L. Yao, A. J. Xie, Y. H. Shen, W. N. Zhu, J. M. Zhu, Cryst. Res. Technol. 49 (2014) 982 (https://doi.org/10.1002/crat.201400300)

Y. F. Wang, J. Gao, X. Z. Wang, L. P. Jin, L. L. Fang, M. Zhang, G. He, Z. Q. Sun, J. Sol-Gel Sci. Techn. 88 (2018) 172 (https://doi.org/10.1007/s10971-018-4786-8)

N. Akter, T. Ahmed, I. Haque, M. K. Hossain, G. Ray, M. M. Hossain, M. S. Islam, M. A. A. shaikh, U. S. Akhtar, Heliyon 10 (2024) e30802 (https://doi.org/10.1016/j.heliyon.2024.e30802)

Z. B. Liu, X. J. Yu, K. Wang, J. Zhang, J. F. Niu, Sep. Purif. Technol. 356 (2025) 129810 (https://doi.org/10.1016/j.seppur.2024.129810)

B. Simović, Ž. Radovanović, G. Branković, A. Dapčević, Mat. Sci. Semicon. Proc. 162 (2023) 107542 (https://doi.org/10.1016/j.mssp.2023.107542)

X. J. Yu, J. Zhang, Y. Y. Chen, Q. G. Ji, Y. C. Wei, J. F. Niu, Z. Yu, B. H. Yao, J. Environ. Chem. Eng. 9 (2021) 106161 (https://doi.org/10.1016/j.jece.2021.106161)

H. Usui, J. Colloid Interf. Sci. 336 (2009) 667 (https://doi.org/10.1016/j.jcis.2009.04.060)

X. J. Yu, Q. G. Ji, Y. C. Wei, Z. B. Liu, N. N. Zhao, M. Yang, Q. Yang, J. Electrochem. Soc. 168 (2021) 126513 (https://doi.org/10.1149/1945-7111/ac3e79)

S. Y. Gao, J. J. Zhang, W. Q. Li, S. J. Jiao, Y. G. Nie, H. Y. Fan, Z. Zeng, Q. J. Yu, J. Z. Wang, X. T. Zhang, Chem. Phys. Lett. 692 (2018) 14 (https://doi.org/10.1016/j.cplett.2017.11.062)