Enhanced photocatalytic performance of ZnO/Cu2O composite for the degradation of methylene blue under the synergy effect
Main Article Content
Abstract
In order to investigate the catalytic degradation efficiency of ZnO/Cu2O composite, the nanocomposite was synthesized via one-pot method and the template of SDS. The crystal structure, microscopic morphology, chemical composition, specific surface area, pore size distribution and optical absorption property of the composite were characterized. Under the irradiation of xenon lamp, the photocatalytic performance of the composite was evaluated by degrading methylene blue (MB). The aforementioned characterization determined that the synthesized composite consisted of ZnO (hexagonal wurtzite) and Cu2O (cubic crystal). Due to the mediation of SDS template, the particles were nanoscale with uniform distribution of Cu, Zn, and O elements and contained abundant mesopores. The photo-response range of the composite expanded to the visible region because of the combination of ZnO and Cu2O. Degradation ratio of MB catalyzed by ZnO/Cu2O maintained about 92% within 100 minutes after five recycling, demonstrating promising potentiality for photocatalytic applications. The enhanced photocatalytic performance maybe related to the mediation of SDS during the preparation process and the synergy effect between ZnO and Cu2O.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Scientific Research Foundation of Education Department of Anhui Province of China
Grant numbers 2025AHGXZK31414;2022AH052139 -
National College Students Innovation and Entrepreneurship Training Program
Grant numbers 202514098035/S202514098176
References
C. Ashina, N. Pugazhenthiran, R. V. Mangalaraja, P. Sathishkumar, Renew. Sust. Energ. Rev. 214 (2025) 115490 (https://doi.org/10.1016/j.rser.2025.115490)
C. Vanlalhmingmawia, H. Moradi, Y. J. Kim, D. S. Kim, J. K. Yang, Chem. Eng. J. 509 (2025) 161335 (https://doi.org/10.1016/j.cej.2025.161335)
C. Q. Shen, X. Y. Li, B. Xue, D. J. Feng, Y. P. Liu, F. Yang, M. Y. Zhang, S. J. Li, Appl. Surf. Sci. 679 (2025) 161303 (https://doi.org/10.1016/j.apsusc.2024.161303)
H. Tu, B. H. Tian, Z. C. Zhao, R. J. Guo, Y. Wang, S. H. Chen, J. Wu, Water Res. X 28 (2025) 100315 (https://doi.org/10.1016/j.wroa.2025.100315)
M. Y. Areeshi, Luminescence 38 (2023) 1111 (https://doi.org/10.1002/bio.4432)
H. Y. Li, X. X. Liu, J. Q. Huang, W. J. Zhu, A. M. Ding, C. L. Yao, J. M. Zhu, Crystallogr. Rep. 67 (2022) 1231 (https://doi.org/10.1134/S1063774522070082)
H. Zhao, Z. H. Zhan, W. C. Li, N. Zhang, X. Ma, P. K. Yan, Y. J. Gao, H. L. Cong, Q. Zhang, J. Alloy. Compd. 1002 (2024) 175197 (https://doi.org/10.1016/j.jallcom.2024.175197)
L. Nadjia, A. Chakib, K. Mohamed, T. Mohamed, E. Abdelkader, Appl. Phys. A-Mater. 131 (2025) 154 (https://doi.org/10.1007/s00339-024-08223-x)
D. Xu, H. L. Ma, J. Clean. Prod. 313 (2021) 127758 (https://doi.org/10.1016/j.jclepro.2021.127758)
A. L. Yang, L. L. Wang, Curr. Nanosci. 18 (2022) 94 (https://doi.org/10.2174/1573413717666210129115305)
R. Rathinabala, R. Thamizselvi, D. Padmanabhan, S. F. Alshahateet, I. Fatimah, A. K. Sibhatu, G. K. Weldegebrieal, S. I. A. Razak, S. Sagadevan, Inorg. Chem. Commun. 143 (2022) 109783 (https://doi.org/10.1016/j.inoche.2022.109783)
P. Attri, S. Garg, J. K. Ratan, A. S. Giri, Korean J. Chem. Eng. 41 (2024) 3191 (https://doi.org/10.1007/s11814-024-00283-2)
J. K. Nie, X. J. Yu, Z. B. Liu, J. Zhang, Y. Ma, Y. Y. Chen, Q. G. Ji, N. N. Zhao, Z. Chang, J. Clean. Prod. 363 (2022) 132593 (https://doi.org/10.1016/j.jclepro.2022.132593)
T. Bekele, G. Mebratie, A. Girma, G. Alamnie, Colloids and Surfaces A.
X. J. Yu, Z. Y. Li, Z. B. Liu, K. Wang, Appl. Surf. Sci. 665 (2024) 160285 (https://doi.org/10.1016/j.apsusc.2024.160285)
P. Liang, W. Y. Yang, H. Y. Peng, S. H. Zhao, Molecules 29 (2024) 5584 (https://doi.org/10.3390/molecules29235584)
X. S. Wang, Y. D. Zhang, Q. C. Wang, B. Dong, Y. J. Wang, W. Feng, Sci. Eng. Compos. Mater. 26 (2019) 104 (https://doi.org/10.1515/secm-2018-0170)
X. S. Jiang, Q. B. Lin, M. Zhang, G. He, Z. Q. Sun, Nanoscale Res. Lett. 10 (2015) 30 (https://doi.org/10.1186/s11671-015-0755-0)
C. L. Yao, C. Chen, Y. J. Yuan, W. J. Zhu, W. Q. Tai, C. Ding, H. Y. Li, Cryst. Res. Technol. 59 (2024) 2300233 (https://doi.org/10.1002/crat.202300233)
M. Amano, K. Hashimoto, H. Shibata, J. Oleo. Sci. 71 (2022) 927 (https://doi.org/10.5650/jos.ess22061)
J. Cui, L. Ye, X. X. Chen, J. N. Li, B. Yang, M. Yang, Q. Yang, D. Q. Yun, S. D. Sun, Appl. Surf. Sci. 638 (2023) 158046 (https://doi.org/10.1016/j.apsusc.2023.158046)
A. Norouzi, A. Nezamzadeh-Ejhieh, Mater. Res. Bull. 164 (2023) 112237 (https://doi.org/10.1016/j.materresbull.2023.112237)
K. Chitalkar, D. Hase, S. Gurav, S. Musmade, R. Gaikar, M. Sillanpää, V. Murade, H. Aher, J. Inorg. Organomet. Polym. 35 (2025) 6961 (https://doi.org/10.1007/s10904-025-03705-8)
X. J. Yu, J. Zhang, J. Zhang, J. F. Niu, J. Zhao, Y. C. Wei, B. H. Yao, Chem. Eng. J. 374 (2019) 316 (https://doi.org/10.1016/j.cej.2019.05.177)
F. Liu, Y. L. Che, Q. W. Chai, M. F. Zhao, Y. Lv, H. Sun, Y. Q. Wang, J. Sun, C. C. Zhao, Environ. Sci. Pollut. R. 26 (2019) 25286 (https://doi.org/10.1007/s11356-019-05814-7)
Y. W. Lu, F. Yu, J. Hu, J. Liu, Appl Catal A-Gen 429 (2012) 48 (https://doi.org/10.1016/j.apcata.2012.04.005)
J. K. Nie, X. J. Yu, Z. B. Liu, Y. C. Wei, J. Zhang, N. N. Zhao, Z. Yu, B. H. Yao, Appl. Surf. Sci. 576 (2022) 151842 (https://doi.org/10.1016/j.apsusc.2021.151842)
J. K. Nie, X. J. Yu, Y. C. Wei, Z. B. Liu, J. Zhang, Z. Yu, Y. Ma, B. H. Yao, Process Saf. Environ. 170 (2023) 241 (https://doi.org/10.1016/j.psep.2022.12.002 )
T. Nesavi · L. Balu · R. Ezhil Pavai, Ionics 31 (2025) 12027 (https://doi.org/10.1007/s11581-025-06697-0)
J. H. Cao, L. P. Ding, W. T. Hu, X. L. Chen, X. Chen, Y. Fang, Langmuir 30 (2014) 15364 (https://doi.org/10.1021/la5039798)
C. L. Yao, A. J. Xie, Y. H. Shen, W. N. Zhu, J. M. Zhu, Cryst. Res. Technol. 49 (2014) 982 (https://doi.org/10.1002/crat.201400300)
Y. F. Wang, J. Gao, X. Z. Wang, L. P. Jin, L. L. Fang, M. Zhang, G. He, Z. Q. Sun, J. Sol-Gel Sci. Techn. 88 (2018) 172 (https://doi.org/10.1007/s10971-018-4786-8)
N. Akter, T. Ahmed, I. Haque, M. K. Hossain, G. Ray, M. M. Hossain, M. S. Islam, M. A. A. shaikh, U. S. Akhtar, Heliyon 10 (2024) e30802 (https://doi.org/10.1016/j.heliyon.2024.e30802)
Z. B. Liu, X. J. Yu, K. Wang, J. Zhang, J. F. Niu, Sep. Purif. Technol. 356 (2025) 129810 (https://doi.org/10.1016/j.seppur.2024.129810)
B. Simović, Ž. Radovanović, G. Branković, A. Dapčević, Mat. Sci. Semicon. Proc. 162 (2023) 107542 (https://doi.org/10.1016/j.mssp.2023.107542)
X. J. Yu, J. Zhang, Y. Y. Chen, Q. G. Ji, Y. C. Wei, J. F. Niu, Z. Yu, B. H. Yao, J. Environ. Chem. Eng. 9 (2021) 106161 (https://doi.org/10.1016/j.jece.2021.106161)
H. Usui, J. Colloid Interf. Sci. 336 (2009) 667 (https://doi.org/10.1016/j.jcis.2009.04.060)
X. J. Yu, Q. G. Ji, Y. C. Wei, Z. B. Liu, N. N. Zhao, M. Yang, Q. Yang, J. Electrochem. Soc. 168 (2021) 126513 (https://doi.org/10.1149/1945-7111/ac3e79)
S. Y. Gao, J. J. Zhang, W. Q. Li, S. J. Jiao, Y. G. Nie, H. Y. Fan, Z. Zeng, Q. J. Yu, J. Z. Wang, X. T. Zhang, Chem. Phys. Lett. 692 (2018) 14 (https://doi.org/10.1016/j.cplett.2017.11.062)