Solution thermodynamics of sodium pyruvate in aqueous glycine solutions at T = (298.15-313.15 K)

Main Article Content

Bijan Kumar Pandit
Abhijit Sarkar
Biswajit Sinha

Abstract

In this study, the effects of sodium pyruvate on the solution thermo­dynamics of glycine were investigated in terms of the solute–solute and solute–
–solvent interactions in aqueous solutions. The measured density and viscosity were used to derive the apparent molar volumes (φV), partial molar volumes () and viscosity B-coefficients at 298.15, 303.15, 308.15 and 318.15 K under ambient pressure. The interactions are further discussed in terms of ion–dipolar, hydrophobic–hydrophobic, hydrophilic–hydrophobic group inter­actions. The activation parameters of viscous flow are also discus­sed in terms of the transition state theory. The overall results indicated that ion–hydrophilic and hydrophilic–hydrophilic group interactions are predomin­ant in the ternary solutions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
B. K. Pandit, A. Sarkar, and B. Sinha, “Solution thermodynamics of sodium pyruvate in aqueous glycine solutions at T = (298.15-313.15 K)”, J. Serb. Chem. Soc., vol. 81, no. 11, pp. 1283–1294, Nov. 2016.
Section
Thermodynamics

References

B. Sinha, A. Sarkar, P. K. Roy, D. Brahman, Int. J. Thermophys. 32 (2011) 2062

B. Sinha, P. K. Roy, M. N. Roy, Acta Chim. Slov. 57 (2010) 651

A. K. Nain, R. Pal, R. K. Sharma, J. Mol. Liq. 165 (2012) 154

A. K. Nain, R. Pal, J. Mol. Liq. 60 (2013 ) 98

A. K. Nain, D. Chand, J. Chem. Thermodyn. 41 (2009) 243

R. Sadeghi, B. Goodarzi, J. Mol. Liq. 141 (2008) 62

A. Ali, S. Hyder, S. Sabir, D. Chand, A. K. Nain, J. Chem. Thermodyn. 38 (2006) 136

Riyazuddeen, M. A. Usmani, Thermochim. Acta 532 (2012) 36

R. Palani, Y. Reeginal, J. Indian Chem. Soc. 87 (2010 ) 265

D. Brahman, B. Sinha, J. Chem. Eng. Data 56 (2011) 3073

M. N. Roy, B. Sinha, J. Chem. Eng. Data 51 (2006) 590

M. N. Roy, B. Sinha, J. Mol. Liq. 133 (2007) 89

B. Sinha, V. K. Dakua, M. N. Roy, J. Chem. Eng. Data 52 (2007) 1768

D. O. Masson, Philos. Mag. 8 (1929) 218

R. K. Wadi, P. Ramasami, J. Chem. Soc. Faraday Trans. 93 (1997) 243

T. S. Banipal, D. Kaur, P. K. Banipal, J. Chem. Eng. Data 49 (2004) 1236

K. Belibagli, E. Agranci, J. Solution Chem. 19 (1990) 867

H. S. Harned, B. B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd ed., Reinhold Publishing Corporation, New York, 1964

F. J. Millero, in Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes, R. A. Horne, Ed., Wiley–Interscience, New York, 1972

M. L. Parmer, D. S. Banyal, Indian J. Chem., A 44 (2005)

L. G. Hepler, Can. J. Chem. Thermodyn. 47 (1969) 4617

C. Zhao, P. Ma, J. Li, J. Chem. Thermodyn. 37 (2005) 37

H. L. Friedman, C. V. Krishnan, in Water: A Comprehensive Treatise, F. Franks, Ed., Vol. 3, Plenum Press, New York, 1973, Ch. 1

R. Bhatt, J. C. Ahlluwalia, J. Phys. Chem. 89 (1985) 1099

G. Jones, M. Dole, J. Am. Chem. Soc. 51 (1929) 2950

B. Sinha, P. K. Roy, B. K. Sarkar, D. Brahman, M. N. Roy, J. Chem. Thermodyn. 42 (2010) 380

D. Feakins, D. J. Freemantle, K. J. Lawrence, J. Chem. Soc., Faraday Trans. 70 (1974) 795

S. Glasstone, K. Laidler, H. Eyring, The Theory of Rate Processes, McGraw–Hill, New York, 1941

A. Chatterjee, B. Das, J. Chem. Eng. Data 51 (2006) 1352

M. Natarajan, R. K. Wahi. H. C. Gour, J. Chem. Eng. Data 35 (1990) 87

R. H. Stokes, R. Miles, International Encyclopedia of Physical Chemistry and Chemical Physics, Pergamon, New York, 1965

S. S. Dhondge, D. W. Deshmukh, L. J. Paliwal, J. Chem. Thermodyn. 58 (2013) 140

C. Zhao, P. Ma, J. Li, J. Chem. Thermodyn. 37 (2005) 37.