Original enzyme-catalyzed synthesis of chalcones: Utilization of hydrolase promiscuity

Authors

  • Yavor N Mitrev Bulgarian Academy of Sciences, Institute of Organic Chemistry with Centre of Phytochemistry
  • Aleksander Y Mehandzhiyski
  • Daniela I Batovska Bulgarian Academy of Sciences, Institute of Organic Chemistry with Centre of Phytochemistry
  • Andreas Liese Institute of Technical Biocatalysis, Technical University Hamburg
  • Boris Galunsky Institute of Technical Biocatalysis, Technical University Hamburg

DOI:

https://doi.org/10.2298/JSC160422069M

Keywords:

Claisen–Schmidt condensation, enzyme promiscuity, lipase-cata¬ly¬zed synthesis

Abstract

An E-chalcone was obtained with very high stereoselectivity for the first time by an enzyme-catalyzed Claisen–Schmidt condensation between benzaldehyde and acetophenone. From a set of lipases, only that from hog pancreas demonstrated promiscuity, catalyzing the reaction in the presence of imidazole as a promoter. Another enzyme, acylase from Aspergillus melleus (EC 3.5.1.14) also proved to be active in the synthesis of E-chalcone under the same reaction conditions. This acylase along with the recombinant D-amino­acylase (EC 3.5.1.81) also catalyzed the reaction between acetophenone and p-nitrobenzaldehyde. Such a “green” approach to the synthesis of chalcones is of great interest because of the important applications of chalcones as formula ingredients in the pharmaceutical, food and cosmetic industries.

Author Biography

Aleksander Y Mehandzhiyski

Bulgarian Academy of Sciences, Institute of Organic Chemistry with Centre of Phytochemistry

References

a) S. N. A. Bukhari, X. Zhang, I. Jantan, H. L. Zhu, M. W. Amjad, V. H. Masand, Chem. Biol. Drug Des. 95 (2015) 729; b) I. Jantan, S. N. A. Bukhari, O. A. Adekoya, I. Sylte, Drug Des. Dev. Ther. 8 (2014) 1405; c) S. N. A. Bukhari, Y. Tajuddin, V. J. Benedict, K. W. Lam, I. Jantan, J. Jalil, M. Jasamai, Chem. Biol. Drug Des. 83 (2014) 198; d) K. Sahu, S. S. Balbhadra, J. Choudhary, Curr. Med. Chem. 19 (2012) 209; e) S. N. A. Bukhari, M. Jasamai, I. Jantam, Mini-Rev. Med. Chem. 12 (2012) 1394; f) H. Prashar, A. Chawla, A. K. Sharma, R. Kharb, Int. J. Pharma Sci. Res. 3 (2012) 1913; g) A. M. Katsori, D. Hadji¬pavlou-Litina, Expert Opin. Ther. Pat. 21 (2011) 1575; h) D. Batovska, I. Todorova, Curr. Clin. Pharmacol. 5 (2010) 1; i) D. Batovska, S. Parushev, Int. J. Curr. Chem. 1 (2010) 217; j) J. Mojzis, L. Varinska, G. Mojzisova, I. Kostova, L. Mirossay, Pharmacol. Res. 57 (2008) 259; k) Z. Nowakowska, Eur. J. Med. Chem. 42 (2007) 125; l) L. Ni, C. Meng, J. Sikorski, Expert Opin. Ther. Pat. 14 (2004) 1669; m) J. Dimmock, D. Elias, M. Beazely, N. Kandepu, Curr. Med. Chem. 6 (1999) 1125

a) D. Batovska, S. Parushev, A. Slavova, V. Bankova, I. Tsvetkova, M. Ninova, H. Najdenski, Eur. J. Med. Chem. 42 (2007) 87; b) K. Lahtchev, D. Batovska, S. Parushev, V. Ubiyvovk, A. Sibirny, Eur. J. Med. Chem. 43 (2008) 2220; c) D. Batovska, S. Parushev, B. Stamboliyska, I. Tsvetkova, M. Ninova, H. Najdenski, Eur. J. Med. Chem. 44 (2009) 2211; d) A. Mehandzhiyski, I. Tsvetkova, H. Najdenski, D. Batovska, Bulg. J. Chem. 1 (2012) 53; e) A. Ivanova, D. Batovska, H. Engi, S. Parushev, I. Ocsovszki, I. Kostova, J. Molnar, In vivo 22 (2008) 379; f) A. Ivanova, D. Batovska, I. Todorova, B. Stamboliyska, J. Serly, J. Molnar, Int. J. Med. Chem. 2011 (2011) article ID 530780; g) R. F. Vasil’ev, V. D. Kancheva, G. F. Fedorova, D. I. Batovska, A. V. Trofimov, Kinet. Catal. 51 (2010) 507; h) D. I. Batovska, G. H. Fedorova, V. D. Kancheva, V. A. Menshov, V. V. Naumov, A. V. Trofimov, Y. B. Tsaplev, R. F. Vasil'ev, T. L. Vep¬rintsev, Luminescence 27 (2012) 99; i) I. Todorova, D. Batovska, B. Stamboliyska, S. Parushev, J. Serb. Chem. Soc. 76 (2011) 491

a) B. Sharma, S. C. Agrawal, K. C. Gupta, Int. J. Chem. Res. 1 (2010) 25; b) A. R. Jagtap, V. S. Satam, R. N. Rajule, V. R. Kanetkar, Dyes Pigm. 91 (2011) 20

Z. Wang, Comprehensive Organic Name Reactions and Reagents. Vol. 3, Wiley-Inter¬science, Hoboken, NJ, 2010, p. 660

a) Q. Xu, Z. Yang, D. Yin, F. Zhang, Catal. Commun. 9 (2008) 1579; b) J. Shen, H. Wang, H. Liu, Y. Sun, Z. Liu, J. Mol. Catal., A: Chem. 280 (2008) 24

a) G. Thirunaratyanan, G. Vanangamudi, Arkivoc 2006(XII) (2006) 58; b) R. K. Saini, N. Kumari, Y. C. Joshi, P. Joshi, S. S. Shekhawat, Asian J. Chem. 19 (2007) 4483

X. Pan, F. Yi, X. Zhang, S. Chen, Asian J. Chem. 24 (2012) 3809

a) E. Perozo-Rondoґn, R. M. Marteґn-Aranda, B. Casal, C. J. Duraґn-Valle, W. N. Lau, X. F. Zhang, K. L. Yeung, Catal. Today 114 (2006) 183; b) J. T. Li, W.-Z. Yang, S.-X. Wang, S.-H. Li, T.-S. Li, Ultrason. Sonochem. 9 (2002) 237

D. Kakati, J. C. Sharma, Chem. Cent. J. 5 (2011) 1

M. M. H. Bhuiyan, M. I. Hossain, M. M. Mahmud, M. Al-Amin, Chem. J. 1 (2011) 21;

b) M. D. Bowman, R. C. Jeske, H. E. Blackwell, Org. Lett. 6 (2004) 2019

a) A. Boumendjel, J. Boccard, P. A. Carrupt, E. Nicolle, M. Blanc, A. Geze, L. Choisnard, D. Wouessidjewe, E. L. Matera, C. Dumontet, J. Med. Chem. 51 (2008) 2307; b) S. Sebti, A. Solhy, R. Tahir, S. Boulaajaj, J. A. Mayoral, J. M. Fraile, A. Kossir, H. Oumimoun, Tetrahedron Lett. 42 (2001) 7953

P. Lozano, T. De Diego, J. L. Iborra, Enzymatic Catalysis. Handbook of Green Chem-istry, Vol. 4, Wiley–VCH, Amsterdam, 2010, p. 281

a) L. Casas-Godoy, S. Duquesne, F. Bordes, G. Sandoval, A. Marty, Methods of Mole¬cular Biology, Vol. 861, Humana Press, New York, 2012, p. 3; b) U. T. Bornscheuer, R. J. Kazlauskas, Hydrolases in Organic Synthesis, 2nd ed., Wiley–VCH, Weinheim, Ger¬many, 2005, p. 61; c) W. Aehle, Enzymes in Industry, 3rd ed., Wiley–VCH, Weinheim, Germany, 2007, p. 108, 171; d) G. Alvaro, A. Illanes, Enzyme Biocatalysis: Principles and Applications, Springer, Amsterdam, 2008, p. 299; e) A. Liese, K. Seelbach, C. Wandrey, Industrial Biotransformations, 2nd ed., Wiley–VCH, Weinheim, 2006, p. 273

a) T. Kitazume, T. Ikeya, K. Murata, J. Chem. Soc., Chem. Commun. 17 (1986) 1331; b) C. Branneby, P. Carlqvist, A. Magnusson, K. Hult, T. Brinck, P. Berglund, J. Am. Chem. Soc. 125 (2003) 874; c) O. Torre, I. Alfonso, V. Gotor, Chem. Commun. 15 (2004) 1724; d) P. Carlqvist, M. Svedendahl, C. Branneby, K. Hult, T. Brinck, P. Berglund, ChemBioChem 6 (2005) 331; e) K. Hult, P. Berglund, Trends Biotechnol. 25 (2007) 231; f) C. Li, X.-W. Feng, N. Wang, Y.-J. Zhou, X.-Q. Yu, Green Chem. 10 (2008) 616.

X. Chen, B.-K. Liu, H. Kang, X.-F. Lin, J. Mol. Catal., B: Enzym. 68 (2011) 71

D. Hwang, J. Hyun, G. Jo, D. Koh, Y. Lim, Magn. Reson. Chem. 49 (2011) 41.

Published

2016-11-26

How to Cite

[1]
Y. N. Mitrev, A. Y. Mehandzhiyski, D. I. Batovska, A. Liese, and B. Galunsky, “Original enzyme-catalyzed synthesis of chalcones: Utilization of hydrolase promiscuity”, J. Serb. Chem. Soc., vol. 81, no. 11, pp. 1231-1237, Nov. 2016.

Issue

Section

Biochemistry & Biotechnology