Experimental measurements and modeling of solvent activity and surface tension of binary mixtures of polyvinylpyrrolidone in water and ethanol

Main Article Content

Majid Taghizadeh
Saber Sheikhvand Amiri

Abstract

In this paper, the density (ρ), viscosity (η) and surface tension (σ) of solutions of poly(vinyl pyrrolidone) (PVP) with molecular weights of 25000 (K25) and 40000 g mol-1 (K40) in water and ethanol were measured in the temperature range 20–65 °C and at various mass fractions of polymer (0.1, 0.2, 0.3 and 0.45). The solvent activity measurements were performed at 45 and 55 °C. Thereafter, two thermodynamic models for predicting the solvent activity and surface tension of binary polymer mixtures (PVP in water and ethanol) were proposed. The Flory–Huggins theory and Eyring model were employed to calculate the surface tension of the solution and the solvent activity, res­pect­ively. Additionally, the proposed activity model was dependent on the density and viscosity of the solution. Afterwards, the ability of these models at various temperatures and mass fractions were investigated by comparing the results with the experimental data. The results confirmed that, in the investigated temperature range, these models have good accuracy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Taghizadeh and S. Sheikhvand Amiri, “Experimental measurements and modeling of solvent activity and surface tension of binary mixtures of polyvinylpyrrolidone in water and ethanol”, J. Serb. Chem. Soc., vol. 82, no. 4, pp. 427–435, May 2017.
Section
Thermodynamics
Author Biographies

Majid Taghizadeh, Chemical Engineering Department, Babol Noshirvani University of Technology, P.O. Box 484, Babol 4714871167

Professor of Chemical Engineering

Saber Sheikhvand Amiri, Chemical Engineering Department, Babol Noshirvani University of Technology, P.O. Box 484, Babol 4714871167

M.Sc. of Chemical Engineering

References

R. Sadeghi, Polymer 46 (2005) 11517

M. T. Zafarani-Moattar, Zh. Khoshsima, J. Chem. Thermodyn. 40 (2008) 1569

R. Sadeghi, M. T. Zafarani-Moattar, J. Chem. Thermodyn. 36 (2004) 665

M. Rahbari-Sisakht, M. Taghizadeh, A. Eliassi, J. Chem. Eng. Data 48 (2003) 1221

S. Trivedi, C. Bhanot, S. J. Pandey, Chem. Thermodyn. 42 (2010) 1367

M. Taghizadeh, A. Eliassi, M. Rahbari-Sisakht, J. Appl. Polym. Sci. 96 (2005) 1059

F. X. Feitosa, A. C. R. Caetano, T. B. Cidade, H. B. de SantAna, J. Chem. Eng. Data 54 (2009) 2957

M. Herskowitz, M. J. Gottlieb, Chem. Eng. Data 30 (1985) 233

J. E. Mark, Polymer Data Handbook, 2nd ed., Oxford University Press, Oxford, 2009

M. Bortolotti, M. Brugnara, C. Della Volpe, D. Maniglio, S. Siboni, J. Colloid Interface Sci. 296 (2006) 292

Ch. Yang, Ch. Zhong, Chin. J. Chem. Eng. 12 (2004) 85

S. Enders, H. Kahl, J. Winkelmann, J. Chem. Eng. Data 52 (2007) 1072

D. T. Stanton, P. C. Jurs, J. Chem. Inf. Comput. Sci. 32 (1992) 109

G. W. Kauffman, P. C. Jurs, J. Chem. Inf. Comput. Sci. 41 (2001) 408

J. Livingston, R. Morgan, J. Am. Chem. Soc. 37 (1915) 1461

P. L. du Noüy, J. Gen. Physiol. 1 (1919) 521

R. Macy, J. Chem. Educ. 12 (1935) 573

K. Mysels, Colloids Surfaces, A 43 (1990) 241

C. R. Reid, T. K. Sherwood, The Properties of Gases and Liquids, McGraw­Hill, New York, 1966

E. Egemen, N. Nirmalakhandan, C. Trevizo, Environ. Sci. Technol. 34 (2000) 2596

T. Oishi, J. M. Prausnitz, Ind. Eng. Chem. Process Des. Dev. 17 (1978) 333

F. Firouzi, H. Modarress, G. A. Mansoori, Eur. Polym. J. 34 (1998) 1489

E. Keshmirizadeh, H. Modarress, A. Eliassi, G. A. Mansoori, Eur. Polym. J. 39 (2003) 1141

M. S. High, R. P. Danner, Fluid Phase Equilib. 53 (1989) 323

L. H. Adams, Chem. Rev. 19 (1936) 1

M. Maali, R. J. Sadeghi, Chem. Thermodyn. 84 (2015) 41

S. Glasstone, K. J. Laidler, H. Eyring, The Theory of Rate Process, McGraw-Hill, New York, 1941

P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, New York, 1953

W. Brown, J. Appl. Polym. Sci. 11 (1967) 2381.