Molecular dynamic simulation study of molten caesium
Main Article Content
Abstract
Molecular dynamics simulations were performed to study thermodynamics and structural properties of expanded caesium fluid. Internal pressure, radial distribution functions (RDFs), coordination numbers and diffusion coefficients have been calculated at temperature range 700–1600 K and pressure range 100–800 bar. We used the internal pressure to predict the metal–non-metal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first peak of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various temperatures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
C. T. Ewing, J. P. Spann, J. R. Stone, R. R. Miller, J. Chem. Eng. Data 16 (1971) 27
C. T. Ewing, J. R. Spann, J. P. Stone, E. W. Steinkuller, R. R. Miller, J. Chem. Eng. Data 55 (1971) 508
W. D. Weatherford, R. K. Johnston, M. L. Valtierra, J. Chem. Eng. Data 9 (1964) 520
F. Roehlich, F. Tepper, R. L. Rankin, J. Chem. Eng. Data 13 (1968) 518
V. Moeini, J. Chem. Eng. Data 55 (2010) 1093
K. Matsuda, S. Naruse, K. Hayashi, K. Tamura, M. Inui, Y. Kajihara, J. Phys.: Conf. Series 98 (2008) 012003
V.M. Nield, M.A. Howe, R. L. McGreevy, J. Phys.: Condens. Matter 3 (1991) 7519
R. Winter, F. Noll, T. Bodensteiner, W. Glaser, P. Chieux, F. Hensel, Z. Phys. Chem. 156 (1988) 145
H. Z. Zhuang, X.-W. Zou, Z.-Z. Jin, D.-C. Tian, Physica, B 253 (1998) 68
S. Jungst, B. Knuth, F. Hensel, Phys. Rev. Lett. 55 (1985) 2160
F.C. Frank, Proc. R. Soc. Lond., A 215 (1952) 43
A. Agoado, Phys. Rev., B 63 (2001) 115404
U. Balucani, A. Torcini, R. Vallauri, Phys. Rev., B 47 (1993) 3011
J-F. Wax, R. Albaki, J.-L. Bretonnet, J. Non Cryst. Solids 312–314 (2002) 187
J.K. Baria, A. R. Jani, J. Non Cryst. Solids 356 (2010) 1696
I. Yokoyama, Physica, B 291 (2000) 145
N. Farzi, R. Safari, F. Kermanpoor, J. Mol. Liquids 137 (2008) 159
F. Juan-Coloa, D. Osorio-Gonzalez, P. Rozendo-Francisco, J. Lopez-Lemus, Mol. Simul. 33 (2007) 1162
D. Belashchenko, Inorg. Mater. 48 (2011) 79
A. Nichol, G. J. Ackland, Phys. Rev., B 93 (2016) 184101
V. V. Chaban, O. V. Prezhdo, J. Phys. Chem., A 120 (2016) 4302
R.P. Gupta, Phys. Rev., B 23 (1981) 6265
J.P.K. Doye, Comput. Mater. Sci. 35 (2006) 227
K. Michaelian, N. Rendon, I. L. Garzon, Phys. Rev., B 60 (1999) 2000
K. Michaelian, M. R. Beltran, I. L. Garzon, Phys. Rev., B 65 (2002) 041403.
M. Manninen, K. Manninen, A. Rytkönen, in: Latest Advances in Atomic Cluster Col¬lisions, J. P. Connerade, A. V. Solov'yov, Eds., World Scientific, Imperial College Press, London, 2004, p. 33
M. H. Ghatee, K. Shekoohi, Fluid Phase Equilib. 327 (2012) 14
J. A. Reyes-Nava, I. L. Garzion, M. R. Beltrian, K. Michelian, Rev. Mex. Fis. 48 (2002) 450
R. Winter, C. Pilgrrim, F. Hensel, J. Phys. IV 1 (1991) 45
F. Hensel, in: High Pressure Chemistry, Biochemistry and Materials Science, R. Winter, J. Jonas, Eds., NATO ASI Series, Springer, Aquafredda di Maratea, 1993, p. 401
F. Hensel,W.-C. Pilgrim, Int. J. Mod. Phys., B 6 (1992) 3709
E. Keshavarzi, G. Parsafar, J. Phys. Chem., B 103 (1999) 6584
V. Moeini, J. Chem. Eng. Data 55 (2010) 5673
G. Parsafar, E. A. Mason, Phys. Rev., B 49 (1994) 3049
J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, John Willey & Sons, Inc, New York, 1964, p. 647
G. Parsafar, E. A. Mason, J. Phys. Chem. 97 (1993) 9048
I. N. Levine, Physical Chemistry, McGraw Hill, New York, 2002, p. 55
F. Cleri, V. Rosato, Phys. Rev., B 48 (1993) 22
N. W. Ashcroft, N. D. Mermin, Solid state Physics, Holt, Rinehart and Winston, New York, 1976, p. 284
N. H. March, Liquid Metals: Concepts and Theory, Cambridge University Press, Cam¬bridge, 1990, p. 155
I. T. Todorov, W. Smith, K. Trachenko, M.T. Dove, J. Mater. Chem. 16 (2006) 1911
N. B. Vargaftik, E. B. Gelman, V. F. Kozhevnikov, S. P. Naursakov, Int. J. Thermophys. 11 (1990) 467
M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1989, p. 81
M. H. Ghatee, M. Bahadori, J. Phys. Chem., B 105 (2001) 11256
V. F. Kozhevnikov. S. P. Naurzakov, A. P. Senchenkov, J. Moscow Phys. Soc. 1 (1991) 171
V. Moeini, J. Phys. Chem., B 110 (2006) 3271
W. Freyland, Phys. Rev., B 20 (1979) 5104
K. Matsuda, K. Tamura, M. Inui, Phys. Rev. Lett. 98 (2007) 096401
K. Tamura, K. Matsuda, M. Inui, J. Phys.: Condens. Matter 20 (2008) 114102
Y. Marcus, Chem. Rev. 113 (2013) 6536
Y. Marcus, J. Mol. Liquids 79 (1999) 151
J. Yuan-Yuan, Z. Qing-Ming, G. Zi-Zheng, J. Guang-Fu, Chin. Phys., B 22 (2013) 083101
A. K. Metya, A. Hens, J. K. Singh, Fluid Phase Equilib. 313 (2012) 16.