Microtubules: a network for solitary waves

Main Article Content

Slobodan Zdravkovic

Abstract

In the present paper we deal with nonlinear dynamics of microtubules. The structure and role of microtubules in cells are explained as well as one of models explaining their dynamics. Solutions of the crucial nonlinear differential equation depend on used mathematical methods. Two commonly used procedures, continuum and semi-discrete approximations, are explained. These solutions are solitary waves usually called as kink solitons, breathers and bell-type solitons.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Zdravkovic, “Microtubules: a network for solitary waves”, J. Serb. Chem. Soc., vol. 82, no. 5, pp. 469–481, Jun. 2017.
Section
Survey

References

F. Oosawa, Biophys. Chem. 47 (1993) 101

S. Hameroff, R. Penrose, Phys. Life Rev. 11 (2014) 39

S. Sahu, S. Ghosh, K. Hirata, D. Fujita, A. Bandyopadhyay, Appl. Phys. Lett. 102 (2013) 123701

D. Havelka, M. Cifra, O. Kučera, J. Pokorný, J. Vrba, J. Theor. Biol. 286 (2011) 31

Taken from Internet on the 13th of May, 2016 (https://www.google.rs/search?q=micro-tubule&biw=1680&bih=913&tbm=isch&tbo=u&source=univ&sa=X&sqi=2&ved=0ahUKEwi_4duGgdfMAhXlDsAKHWVACEAQsAQIJw)

P. Dustin , Microtubules, Springer, Berlin, 1984

H. Salman, Y. Gil, R. Granek, M. Elbaum, Chem. Phys. 284 (2002) 389

U. Lucia, Chem. Phys. Lett. 556 (2013) 242

M. Cifra, J. Pokorny, D. Havelka, O. Kučera, BioSystems 100 (2010) 122

D. Cai, K. J. Verhey, E, Meyhöfer, Biophys. J. 92 (2007) 4137

Yi-der Chen, Biophys. J. 78 (2000) 313

Yi-der Chen, Bo Yan, Biophys. Chem. 91 (2001) 79

D. Chowdhury, Phys. Rep. 529 (2013) 1

A. Desai, T. J. Mitchison, Annu. Rev. Cell Dev. Biol. 13 (1997) 83

S. P. Maurer, F. J. Fourniol, G. Bohner, C. A. Moores, T. Surrey, Cell 149 (2012) 371

S. Chattoraj, K. Bhattacharyya, Chem. Phys. Lett. 660 (2016) 1

T. Mitchison and M. Kirschner, Nature 312 (1984) 237

L. Cassimeris, N. K. Pryer, E. D. Salmon, J. Cell Biol. 107 (1988) 2223

P. Mondal, S. Chattoraj, R. Chowdhury, D. Bhunia, S. Ghosh, K. Bhattacharyya, Phys. Chem. Chem. Phys. 17 (2015) 6687

S. R. Hameroff, R. C. Watt, J. Theor. Biol. 98 (1982) 549

M. V. Satarić, J. A.Tuszyński, R. B. Žakula, Phys. Rev. E 48 (1993) 589

P. Drabik, S. Gusarov, A. Kovalenko, Biophys. J. 92 (2007) 394

E. Nogales, M. Whittaker, R. A. Milligan, K. H. Downing, Cell 96 (1999) 79

S. Zdravković, L. Kavitha, M. V. Satarić, S. Zeković, J. Petrović, Chaos Solitons Fract. 45 (2012) 1378

S. Zdravković, S. Zeković, A. N. Bugay, M. V. Satarić, Appl. Math. Comput. 285 (2016) 248

S. Zdravković, M. V. Satarić, S. Zeković, Europhys. Lett. 102 (2013) 38002

S. Zdravković, M. V. Satarić, A. Maluckov, A. Balaž, Appl. Math. Comput. 237 (2014) 227

M. Remoissenet, Phys. Rev. B 33 (1986) 2386

T. Dauxois, M. Peyrard, Physics of Solitons, Chapter 3, Cambridge University Press, Cambridge, UK, 2006

S. Zdravković, J. Nonlin. Math. Phys. 18 (Suppl. 2), (2011) 463

D. J. Korteweg, G. de Vries, Philos. Mag. 39 (1895) 422

J. V. Boussinesq, Essai sur la theorie des eaux courantes, Memoires presentes par divers savants lAcad. des Sci. Inst. Nat. France, XXIII, pp. 1–680, Imprimerie Nationale, Paris, 1877

A. Scott, Nonlinear Science, emergence and dynamics of coherent structures, 2nd edition, Oxford University Press, 2003 or Fizmatlit, Moscow, 2007 (in Russian)

M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics, Springer, Third Indian Reprint, New Delhi, 2009

A. Gonzalez-Perez, L. D. Mosgaard, R. Budvytyte, E. Villagran-Vargas, A. D. Jackson, T. Heimburg, Biophys. Chem. 216 (2016) 51

S. Zeković, A. Muniyappan, S. Zdravković, L. Kavitha, Chin. Phys. B 23 (2014) 020504

S. Zdravković, A. Maluckov, M. Đekić, S. Kuzmanović, M. V. Satarić, Appl. Math. Comput. 242 (2014) 353

S. Zdravković, G. Gligorić, Chaos 26 (2016) 063101.