Structural and electronic effects of cation binding (Li+, Na+, K+, Mg2+ and Ca2+) to the π system of the (ƞ6-benzene)–Cr(CO)3 complex: A theoretical study

Main Article Content

Ayyavoo Kalpana
Lakshminarayanan Akilandeswari

Abstract

Cation binding to the π-electrons of benzene is known to show a periodic trend in interaction energies. In the present work, the chemistry of cation–π interaction in a benzene ring bound with tripodal Cr(CO)3 (BC) was considered. In contradiction to the anticipated destabilisation due to compe­t­ition between two Lewis acids towards a common sandwiched base, cation binding with BC showed a similar trend as that to benzene. Furthermore, it was found to activate the benzene ring by reducing the frontier orbital energy gap substantially. The NICSzz index adds sufficient evidence to the arguments. In addition, TDDFT studies indicate a bathochromic shift upon cation binding as an immediate consequence of the reduction in the energy of the Frontier orbital.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Kalpana and L. Akilandeswari, “Structural and electronic effects of cation binding (Li+, Na+, K+, Mg2+ and Ca2+) to the π system of the (ƞ6-benzene)–Cr(CO)3 complex: A theoretical study”, J. Serb. Chem. Soc., vol. 82, no. 10, pp. 1123–1134, Nov. 2017.
Section
Theoretical Chemistry
Author Biographies

Ayyavoo Kalpana, Department of Chemistry, Sri Sarada College for Women, Salem 636 016, TamilNadu, India

Department of Chemistry

Sri Sarada College for Women

Salem-636016

Lakshminarayanan Akilandeswari, Department of Chemistry, Sri Sarada College for Women, Salem 636 016, TamilNadu, India

Department of Chemistry

Sri Sarada College for Women

Salem-636016

References

G. Weber, Protein interactions, Chapman & Hall, London, 1992

H. Rubin, Touchstone of life: molecular information, cell communication, and the found¬ations of life, Oxford University Press, New York, 1999

A. Subha Mahadevi, G. N. Sastry, Chem. Rev. 113 (2013) 2100

B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, K. S. Kim, Science 294 (2001) 348

D. A. Dougherty, J. Nutr. 137 (2007) 1504S

M. M. Torrice, K. S. Bower, H. A. Lester, D. A. Dougherty, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 11919

P. Lhoták, S. Shinkai, J. Phys. Org. Chem. 10 (1997) 273

E. T. Kool, M. L. Waters, Nat. Chem. Biol. 3 (2007) 70

J. C. Ma, D. A. Dougherty, Chem. Rev. 97 (1997) 1303

D. A. Dougherty, Acc. Chem. Res. 46 (2013) 885

J. D. Cox, J. A. Hunt, K. M. Compher, C. A. Fierke, D. W. Christianson, Biochemistry 39 (2000) 13687

J. Sunner, K. Nishizawa, P. Kebarle, J. Phys. Chem. 85 (1981) 1814

S. E. Wheeler, K. N. Houk, J. Am. Chem. Soc. 131 (2009) 3126

A. Hassan, T. C. Dinadayalane, J. Leszczynski, Chem. Phys. Lett. 443 (2007) 205

T. C. Dinadayalane, A. Hassan, J. Leszczynski, J. Mol. Struct.: THEOCHEM 976 (2010) 320

S. D. Zaric, Chem. Phys. Lett. 311 (1999) 77

W. Zhu, X. Tan, J. Shen, X. Luo, F. Cheng, P. C. Mok, R. Ji, K. Chen, H. Jiang, J. Phys. Chem., A 107 (2003) 2296

J. F. Gal, P. C. Maria, M. Decouzon, O. Mό, M. Yáñez, J. L. M. Abboud, J. Am. Chem. Soc. 125 (2003) 10394

O. Mό, M. Yáñez, J. F. Gal, P. C. Maria, M. Decouzon, Chem.-Eur. J. 9 (2003) 4330

J. F. Gal, P. C. Maria, M. Decouzon, O. Mό, M. Yáñez, D. Kuck, Chem.-Eur. J. 12 (2006) 7676

a) C. Garau, A. Frontera, D. Quiñonero, P. Ballester, A. Costa, P. M. Deyà, Chem. Phys. Lett. 392 (2004) 85; b) C. Estarellas, D. Escudero, A. Frontera, D. Quiñonero, P. M. Deyà, Theor. Chem. Acc. 122 (2009) 325; c) A. Frontera, D. Quiñonero, P. Ballester, A. Costa, P. M. Deyà, New J. Chem. 31 (2007) 556; d) A. Frontera, D. Quiñonero, P. M. Deyà, WIREs Comput. Mol. Sci. 1 (2011) 440

a) R. Amunugama, M. T. Rodgers, Int. J. Mass Spectrom. 222 (2003) 431; b) R. Amunu¬gama, M. T. Rodgers, J. Phys. Chem., A 106 (2002) 9718

a) Y.-C. Lin, R. C. Dunbar, Organometallics. 16 (1997) 2691; b) R. C. Dunbar, J. D. Steill, J. Oomens, J. Am. Chem. Soc. 133 (2011) 9376

A. J. Pearson, Metallo-Organic Chemistry, Wiley, New York, 1985

a) F. J. McQuillin, D. G. Parker, G. R. Stephenson, Transition Metal Organometallics for Organic Synthesis, Cambridge University Press, Cambridge, 1991; b) B. L. Feringa, Molecular Switches, Wiley–VCH, Weinheim, 2001; c) N. L. Wagner, F. E. Laib, D. W. Bennett, Inorg. Chem. Commun. 3 (2001) 87; d) R. A. van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, B. L. Feringa, Nature 437 (2005) 1337; e) T. J. J. Muller, A. Netz, M. Ansorge, Organometallics 18 (1999) 5066

A. A. Low, M. B. Hall, Int. J. Quant. Chem. 77 (2000) 152

C. H. Suresh, N. Koga, S. R. Gadre, Organometallics 19 (2000) 3008

a) A. Kalpana, L. Akilandeswari, Comput. Theor. Chem. 1069 (2015) 125; b) A. Kalpana, L. Akilandeswari, Comput. Theor. Chem. 1084 (2016) 103

a) A. Boldyrev, L. S. Wang, Chem. Rev. 105 (2005) 3716; b) D. D. Yu. Zubarev, B. B. Averkiev, H.-J. Zhai, L. S. Wang, A. I. Boldyrev, Phys. Chem. Chem. Phys. 10 (2008) 257; c) T. R. Galeev, A. Boldyrev, Annu. Rep. Prog. Chem., C 107 (2011) 124

a) A. C. Tsipis, Phys. Chem. Chem. Phys. 11 (2009) 8244; b) A. C. Tsipis, I. G. Depastas, E. E. Karagiannis, C. A. Tsipis, J. Comput. Chem. 31 (2010) 431; c) A. C. Tsipis, I. G. Depastas, C. A. Tsipis, Symmetry 2 (2010) 284

D. V. Simion, T. S. Sorensen, J. Am. Chem. Soc. 118 (1996) 7345

R. H. Mitchell, Chem. Rev. 101 (2001) 1301

P. V. R. Schleyer, B. Kiran, D. V. Simion, T. S. Sorensen, J. Am. Chem. Soc. 124 (2002) 11983

F. Feixas, J. O. C. Jimenez-Halla, E. Matito, J. Poater, M. Sola, Pol. J. Chem. 81 (2007) 783

Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.

a) A. D. Becke, J. Chem. Phys. 98 (1993) 1372; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456

P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 28 (1973) 213

P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 299

S. F. Boys, R. Bernardi, Mol. Phys. 19 (1979) 553

a) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 102 (1980) 7211; b) A. D. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899; c) E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO 3.1 Program Manual, Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI, 1988

P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. v. E. Hommes, J. Am. Chem. Soc. 118 (1996) 6317

K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251

L. V. Skripnikov, Chemissian Visualization Computer Program, www.chemissian.com, 2009

W. Yang, R. G. Parr, Proc. Natl. Acad. Sci. U.S.A. 82 (1985) 6723

a) A. Srinivas Reddy, G. N. Sastry, J. Phys. Chem., A 109 (2005) 8893; b) A. Srinivas Reddy, Hendrik Zipse, G. N. Sastry, J. Phys. Chem., B 111 (2007) 11546

F. Albert Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999.