Applicability of zeolites in potassium and nitrate retention in different soil types
Main Article Content
Abstract
Environmental protection and sustainable agricultural production require use of inexpensive and environmentally acceptable soil supplements. Objectives of this study were to investigate the influence of addition of the natural zeolite - clinoptilolite (NZ) and its iron(III)-modified form (FeZ) on potassium and nitrate leaching from sandy, silty loam and silty clay soils. The zeolites were added in two amounts: 0.5 (FeZ) and 1.0 wt.% (NZ and FeZ). The experiments were carried out in columns organized in eight experimental systems containing unamended (controls) and amended soils. The concentration of K+ and NO3-N in the leachates was monitored during 7 days. The obtained results indicate that the K+ and NO3-N leaching mainly depends on the soil type and pH of the soil. The NZ and FeZ addition has the highest impact on the K+ retention in the acidic sandy soil. The highest NO3-N retention is obtained with FeZ in acidic silty loam soil. The K+ leaching kinetics for all the studied soils follow the Avrami kinetics model with the parameter n < 1. This study demonstrates that NZ and FeZ can be a good soil supplement for the K+ retention for all studied soils and in the NO3-N retention for silty loam and silty clay soils.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
G. Sorrenti, M. Toselli, Agr. Ecosyst. Environ. 226 (2016) 56
N. Colombani, M. Mastrocicco, D. Di Giuseppe, B. Faccini, M. Coltorti, Catena 123 (2014) 195
T. Glab, J. Palmowska, T. Zaleski, K. Gondek, Geoderma 281 (2016) 11
C. Bigelow, D. Bowman, D. K. Cassel, Crop Sci. 44 (2004) 900
M. Reháková, S. Čuvanová, M. Dzivák, J. Rimár, Z. Cavalová, Curr. Opin. Solid State Mater. Sci. 8 (2004) 397
D. W. Ming, J. B. Dixon, Clay Clay Miner. 35 (1987) 463
V. K. Jha, S. Hayashi, J. Hazard. Mater. 169 (2009) 29
N. Zwingmann, B. Singh, I. D. R. Mackinnon, R. J. Gilkes, Appl. Clay Sci. 46 (2009) 7
M. Moradzadeh, H. Moazed, G. Sayyad, M. Khaledian, Acta Ecologica Sinica 34 (2014) 342
H. Xiubin, H. Zhanbin, Resour. Conserv. Recycl. 34 (2001) 45
R. Cerjan Stefanović, N. Zabukovec Logar, K. Margeta, N. Novak Tušar, I. Arčon, K. Maver, J. Kovač, V. Kaučić, Micropor. Mesopor. Mater. 105 (2007) 251
A. Godelitsas, T. Armbruster, Micropor. Mesopor. Mater. 61 (2003) 3
J. Pavlović, J. Milenković, N. Rajić, J. Serb. Chem. Soc. 79 (2014) 1309
M. Habuda-Stanić, B. Kalajdžić, M. Kuleš, N. Velić, Desalination 229 (2008) 1
D. M. Moore, R. C. Reynolds, X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, Oxford, 1997, pp. 227–258
G. Brown, G. W. Brindley, Crystal structures of clay minerals and X-ray identification, Mineralogical Society, London, 1980, pp. 205–360
K. Pederstad, P. Jørgensen, Clay Miner. 20 (1985) 477
P. Elonen, Acta Agral. Fenn. 112 (1971) 1
G.W. Thomas, Methods of Soil Analysis, Part 3-Chemical Methods, Soil Science Society of America, Madison, WI, 1996, pp. 475–490
G.W. Thomas, Methods of Soil Analysis, Part 3-Chemical Methods, Soil Science Society of America, Madison, WI, 1996, pp. 961–1009
J. M. Bremner, C. S. Mulvaney, Methods of Soil Analysis Part 2 Agronomy 9, American Society of Agronomy, INC., Madison, WI, 1982, pp. 595–624
H. Egner, H. Riehm, W. R. Domingo, Kungliga Lantbrukshügskolans Annaler 26 (1960) 199
H. J. Di, K. C. Cameron, Nutr. Cycl. Agroecosys. 46 (2002) 237
R. Malekian, J. Abedi–Koupai, S. S. Eslamian, J. Hazard. Mater. 185 (2011) 970
B. Sharma, A. Rani, Int. J. Plant Soil Sci. 2 (2013) 70
Y. Zheng, K. Chen, T. Non-Ferr. Metal. Soc. 24 (2014) 536
N. Oumabady, M. Rajendran, R. Selvaraju, J. Environ. Nanotechnol. 3 (2014) 23
M. Haque, M. Nairuzzaman, H. Imam, IJSTR 2 (2013) 174
W. Szymański, M. Skiba, V. Nikorych, A. Kuligiewicz, A. Geoderma, 235–236 (2014) 396
A. F. Øgaard, T. Krogstad, J. Plant Nutr. Soil Sci. 168 (2005) 80
Z. Kolahchi, M. Jalali, J. Arid. Environ. 68 (2007) 624
V. Sharma, K. N. Sharma, Pedosphere 23 (2013) 464
M. Kragović, A. Daković, Ž. Sekulić, M. Trgo, M. Ugrina, J. Perić, G. Diego Gatta, Appl. Surf. Sci. 258 (2012) 3667
L. Meng, Y. Dongsheng, P. Liping, Y. Qingni, H. Yong, Chin. J. Aeronaut. 28 (2015) 1583
M. S. Shafeeyan, W. M. A. W. Daud, A. Shamiri, Energy Fuels 29 (2015) 6565
M. Songolzadeh, M. Soleimani, M. Takht Ravanchi, J. Nat. Gas Sci. Eng. 27 (2015) 831
N. Demirkiran, A. Künkül, Int. J. Miner. Process. 83 (2007) 76
J. E. House Principles of Chemical Kinetics, Esevier, Amsterdam, 2007, pp. 1–23
W. J. Jr. Weber, J. C. Morris, J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89 (1963) 31
S. Z. Roginsky, J. Zeldovich, Acta Physicochim. U.R.S.S. 1 (1934) 554
M. Avrami, J. Chem. Phys. 7 (1939) 1103
Z. Li, W. T. Jiang, P. H. Chang, C. J. Chen, L. Liao, J. Hazard. Mater. 187 (2011) 318
S. Jevtić, I. Arčon, A. Rečnik, B. Babić, M. Mazaj, J. Pavlović, D. Matijašević, M. Nikšić, N. Rajić, Micropor. Mesopor. Mater. 197 (2014) 92
D. Guaya, C. Valderrama, A. Farran, J. L. Cortina, J. Chem. Technol. Biotech. 91 (2016) 1737
N. Colombani, M. Mastrocicco, D. Di Giuseppe, B. Faccini, M. Coltorti, Catena 127 (2015) 64
M. Mao, L. Ren, Groundwater 42 (2004) 500
P. Orban, S. Brouyère, J. Batle-Aguilar, J. Couturier, P. Goderniaux, M. Leroy, P. Malo¬szewski, A. Dassargues, J. Contam. Hydrol. 118 (2010) 79
M. Mastrocicco, N. Colombani, G. Castaldelli, N. Jovanovic, Water Air Soil Poll. 217 (2011) 83
M. L. Brusseau, Q. Hu, R. Srivastava, J. Contam. Hydrol. 24 (1997) 205.