Production of biosolvents and acids by salinity-adapted strain of Clostridium acetobutylicum: Effects of salt and molasses concentrations

Main Article Content

Reza Zabihi
Dariush Mowla
Gholamreza Karimi

Abstract

: In this study, the growth of Clostridium acetobutylicum was eval­uated in Clostridium basal medium (CBM) containing 0.001, 0.5, 1, 2 and 4 % salt concentrations. Although the strain is sensitive to salinity of more than
2 %, the adapted strain was shown to grow even at 6 % salinity. Results indi­cate adverse effects of salinity on bacterial growth and bioproducts, such as 1-
-butanol and butyric acid, whereas the produced acetone is increased by salinity in CBM. In addition, the glucose of CBM is substituted by sugar beet molasses, due to its lower price and greater accessibility. Therefore, molasses-based mediums (MBM) at different concentrations of molasses were examined to assess the effect of molasses concentration on the adapted strain at low salinity. The results showed that 4 and 6 % concentrations of molasses are optimum concentrations for bacterial growth and its production of bioproducts at low salinity. Finally, the simultaneous effects of salinity and molasses concen­tra­tion on the adapted strain were investigated. For this purpose, molasses-based mediums (MBM) containing 2, 3 and 4 % molasses concentration at 4 % sali­nity were considered. The results demonstrated that the increase in the mol­asses concentration raises the production of both butyric acid and acetone

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
R. Zabihi, D. Mowla, and G. Karimi, “Production of biosolvents and acids by salinity-adapted strain of Clostridium acetobutylicum: Effects of salt and molasses concentrations”, J. Serb. Chem. Soc., vol. 83, no. 4, pp. 411–423, Apr. 2018.
Section
Biochemistry & Biotechnology

References

J. Zigova, E. SturdiK, E. Zigov J, Sturdik EK, J. Ind. Microbiol. Biotechnol. 24 (2000) 153

T. Lütke-Eversloh, H. Bahl, Curr. Opin. Biotechnol. 22 (2011) 634

M. M. K. Bagy, M. H. Abd-Alla, F. M. Morsy, E. A. Hassan, Int. J. Hydrogen Energy 39 (2014) 3185

N. Kaid, N. Al-shorgani, M. Hafez, M. Isa, W. Mohtar, W. Yusoff, M. Sahaid, A. Abdul, Renew. Energy 86 (2016) 459

E. A. Hassan, M. H. Abd-alla, M. Mohamed, K. Bagy, Anaerobe 34 (2015) 125

C. M. Cooksley, Y. Zhang, H. Wang, S. Redl, K. Winzer, N. P. Minton, Metab. Eng. 14 (2012) 630

D. T. Jones, A. Van der Westhuizen, S. Long, E. R. Allcock, S. J. Reid, D. R. Woods, Appl. Environ. Microbiol. 43 (1982) 1434

F. Heidari, M. A. Asadollahi, A. Jeihanipour, M. Kheyrandish, H. Rismani-Yazdi, K. Karimi, RSC Adv. 6 (2016) 9254

S. Sreekumar, Z. C. Baer, A. Pazhamalai, G. Gunbas, A. Grippo, H. W. Blanch, D. S. Clark, F. D. Toste, Nat. Protoc. 10 (2015) 528

Y. Ni, Z. Sun, Appl. Microbiol. Biotechnol. 83 (2009) 415

S. Rudyk, E. Søgaard, How specific microbial communities benefit the oil industry: microbial-enhanced oil recovery (MEOR), in Appl. Microbiol. Mol. Biol. Oilf. Syst., Springer, 2010, pp. 179

H. Alshiyab, M. S. Kalil, A. A. Hamid, Y. W. M. Wan, Pak. J. Biol. Sci. 11 (2008) 2193

N. Qureshi, B. C. Saha, R. E. Hector, M. A. Cotta, Biomass and Bioenergy 32 (2008) 1353

E. W. J. van Niel, P. A. M. Claassen, A. J. M. Stams, Biotechnol. Bioeng. 81 (2003) 255

X. J. Zheng, Y. M. Zheng, H. Q. Yu, Environ. Technol. 26 (2005) 1073

J. Cheng, Biomass to renewable energy processes, CRC press, Boca Raton, FL, 2009

M. R. Nićetin, L. L. Pezo, B. L. J. Lončar, V. S. Filipović, D. Z. Šuput, V. M. Knežević, J. S. Filipović, J. Serbian Chem. Soc. 82 (2017) 253

M. Wagner, D. Lungerhausen, H. Murtada, G. Rosenthal, Development and application of a new biotechnology of the molasses in-situ method; detailed evaluation for selected wells in the Romashkino carbonate reservoir, BDM Oklahoma, Inc., Bartlesville, OK, 1995

Persian Type Culture Collection, http://ptcc.irost.org/DBank-details.asp?id= =103&code=0 (2017)

ATCC, https://www.atcc.org (2017)

F. Monot, J.-R. Martin, H. Petitdemange, R. Gay, Appl. Environ. Microbiol. 44 (1982) 1318

X. Zhao, S. Condruz, J. Chen, M. Jolicoeur, Sci. Rep. 6 (2016) 28307

I. S. Maddox, N. Qureshi, K. Roberts-Thomson, Process Biochem. 30 (1995) 209

M. G. N. Hartmanis, T. Klason, S. Gatenbeck, Appl. Microbiol. Biotechnol. 20 (1984) 66

Y. Chen, J. J. Cheng, K. S. Creamer, Bioresour. Technol. 99 (2008) 4044

P. L. McCarty, R. E. McKinney, J. (Water Pollut. Control Fed. (1961) 399

H. A. O. Xiaolong, Z. Minghua, Y. U. Hanqing, S. Qinqin, L. Lei, Chinese J. Chem. Eng. 14 (2006) 511

D. Michel-Savin, R. Marchal, J. P. Vandecasteele, Appl. Microbiol. Biotechnol. 34 (1990) 172

G. N. Bennett, F. B. Rudolph, FEMS Microbiol. Rev. 17241-249 17 (1995) 241

L. Girbal, C. Croux, I. Vasconcelos, P. Soucaille, C. De Bioingdnierie, G. Durand, U. a Cnrs, C. S. De Rangueil, FEMS Microbiol. Rev. 17 (1995) 287.