Production of biosolvents and acids by salinity-adapted strain of Clostridium acetobutylicum: Effects of salt and molasses concentrations
Main Article Content
Abstract
: In this study, the growth of Clostridium acetobutylicum was evaluated in Clostridium basal medium (CBM) containing 0.001, 0.5, 1, 2 and 4 % salt concentrations. Although the strain is sensitive to salinity of more than
2 %, the adapted strain was shown to grow even at 6 % salinity. Results indicate adverse effects of salinity on bacterial growth and bioproducts, such as 1-
-butanol and butyric acid, whereas the produced acetone is increased by salinity in CBM. In addition, the glucose of CBM is substituted by sugar beet molasses, due to its lower price and greater accessibility. Therefore, molasses-based mediums (MBM) at different concentrations of molasses were examined to assess the effect of molasses concentration on the adapted strain at low salinity. The results showed that 4 and 6 % concentrations of molasses are optimum concentrations for bacterial growth and its production of bioproducts at low salinity. Finally, the simultaneous effects of salinity and molasses concentration on the adapted strain were investigated. For this purpose, molasses-based mediums (MBM) containing 2, 3 and 4 % molasses concentration at 4 % salinity were considered. The results demonstrated that the increase in the molasses concentration raises the production of both butyric acid and acetone.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
J. Zigova, E. SturdiK, E. Zigov J, Sturdik EK, J. Ind. Microbiol. Biotechnol. 24 (2000) 153
T. Lütke-Eversloh, H. Bahl, Curr. Opin. Biotechnol. 22 (2011) 634
M. M. K. Bagy, M. H. Abd-Alla, F. M. Morsy, E. A. Hassan, Int. J. Hydrogen Energy 39 (2014) 3185
N. Kaid, N. Al-shorgani, M. Hafez, M. Isa, W. Mohtar, W. Yusoff, M. Sahaid, A. Abdul, Renew. Energy 86 (2016) 459
E. A. Hassan, M. H. Abd-alla, M. Mohamed, K. Bagy, Anaerobe 34 (2015) 125
C. M. Cooksley, Y. Zhang, H. Wang, S. Redl, K. Winzer, N. P. Minton, Metab. Eng. 14 (2012) 630
D. T. Jones, A. Van der Westhuizen, S. Long, E. R. Allcock, S. J. Reid, D. R. Woods, Appl. Environ. Microbiol. 43 (1982) 1434
F. Heidari, M. A. Asadollahi, A. Jeihanipour, M. Kheyrandish, H. Rismani-Yazdi, K. Karimi, RSC Adv. 6 (2016) 9254
S. Sreekumar, Z. C. Baer, A. Pazhamalai, G. Gunbas, A. Grippo, H. W. Blanch, D. S. Clark, F. D. Toste, Nat. Protoc. 10 (2015) 528
Y. Ni, Z. Sun, Appl. Microbiol. Biotechnol. 83 (2009) 415
S. Rudyk, E. Søgaard, How specific microbial communities benefit the oil industry: microbial-enhanced oil recovery (MEOR), in Appl. Microbiol. Mol. Biol. Oilf. Syst., Springer, 2010, pp. 179
H. Alshiyab, M. S. Kalil, A. A. Hamid, Y. W. M. Wan, Pak. J. Biol. Sci. 11 (2008) 2193
N. Qureshi, B. C. Saha, R. E. Hector, M. A. Cotta, Biomass and Bioenergy 32 (2008) 1353
E. W. J. van Niel, P. A. M. Claassen, A. J. M. Stams, Biotechnol. Bioeng. 81 (2003) 255
X. J. Zheng, Y. M. Zheng, H. Q. Yu, Environ. Technol. 26 (2005) 1073
J. Cheng, Biomass to renewable energy processes, CRC press, Boca Raton, FL, 2009
M. R. Nićetin, L. L. Pezo, B. L. J. Lončar, V. S. Filipović, D. Z. Šuput, V. M. Knežević, J. S. Filipović, J. Serbian Chem. Soc. 82 (2017) 253
M. Wagner, D. Lungerhausen, H. Murtada, G. Rosenthal, Development and application of a new biotechnology of the molasses in-situ method; detailed evaluation for selected wells in the Romashkino carbonate reservoir, BDM Oklahoma, Inc., Bartlesville, OK, 1995
Persian Type Culture Collection, http://ptcc.irost.org/DBank-details.asp?id= =103&code=0 (2017)
ATCC, https://www.atcc.org (2017)
F. Monot, J.-R. Martin, H. Petitdemange, R. Gay, Appl. Environ. Microbiol. 44 (1982) 1318
X. Zhao, S. Condruz, J. Chen, M. Jolicoeur, Sci. Rep. 6 (2016) 28307
I. S. Maddox, N. Qureshi, K. Roberts-Thomson, Process Biochem. 30 (1995) 209
M. G. N. Hartmanis, T. Klason, S. Gatenbeck, Appl. Microbiol. Biotechnol. 20 (1984) 66
Y. Chen, J. J. Cheng, K. S. Creamer, Bioresour. Technol. 99 (2008) 4044
P. L. McCarty, R. E. McKinney, J. (Water Pollut. Control Fed. (1961) 399
H. A. O. Xiaolong, Z. Minghua, Y. U. Hanqing, S. Qinqin, L. Lei, Chinese J. Chem. Eng. 14 (2006) 511
D. Michel-Savin, R. Marchal, J. P. Vandecasteele, Appl. Microbiol. Biotechnol. 34 (1990) 172
G. N. Bennett, F. B. Rudolph, FEMS Microbiol. Rev. 17241-249 17 (1995) 241
L. Girbal, C. Croux, I. Vasconcelos, P. Soucaille, C. De Bioingdnierie, G. Durand, U. a Cnrs, C. S. De Rangueil, FEMS Microbiol. Rev. 17 (1995) 287.