Theoretical study of the addition and hydrogen abstraction reactions of the methyl radical with formaldehyde and hydroxymethylene

Main Article Content

Huu Tho Nguyen
Xuan Sang Nguyen

Abstract

The mechanism, thermochemistry and kinetics of the addition and hydrogen-atom abstraction reactions of the methyl radical with formaldehyde and hydroxymethylene were investigated by ab initio calculations. The poten­tial energy surface (PES) of the reactions were calculated by single point cal­cul­ations at the CCSD(T)/6-311++G(3df,2p) level based on geometries at the B3LYP/6-311++G(3df,2p) level. The rate constants of various product chan­nels were estimated by the variational transition state theory (VTST) and are discussed for the seven reactions in the temperature range of 300–2000 K and at 101325 Pa pressure. The calculated results showed that all the hydrogen abs­traction reactions are more favorable than the addition ones.

     

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
H. T. Nguyen and X. S. Nguyen, “Theoretical study of the addition and hydrogen abstraction reactions of the methyl radical with formaldehyde and hydroxymethylene”, J. Serb. Chem. Soc., vol. 83, no. 10, pp. 1113–1122, Oct. 2018.
Section
Theoretical Chemistry
Author Biographies

Huu Tho Nguyen, Department of Natural Sciences Education, Saigon University, 273 An Duong Vuong St., District 5, Ho Chi Minh 700000

Natural Sciences Education

Xuan Sang Nguyen, Department of Electronics and Telecommunications, Saigon University, 273 An Duong Vuong St., District 5, Ho Chi Minh 700000,

Electronic and Telecommunication

References

R. N. Hazlett, in Frontiers of Free Radical Chemistry, W. A. Pryor, Ed., Academic Press, Cambridge, MA, 1980, pp. 195–223

J. A. Kerr, in Frontiers of Free Radical Chemistry, W. A. Pryor, Ed., Academic Press, Cambridge, MA, 1980, pp. 171–193

A. Phaniendra, D. B. Jestadi, L. Periyasamy, Indian J. Clin. Biochem. 30 (2015) 11

V. Lobo, A. Patil, A. Phatak, N. Chandra, Pharmacogn. Rev. 4 (2010) 118

J. M. Simmie, H. J. Curran, J. Phys. Chem. A 113 (2009) 7834

L. Rutz, H. Bockhorn, J. W. Bozzelli, Prepr. Symp. Am. Chem. Soc., Div. Fuel Chem. 49 (2004) 451

S. L. Boyd, R. J. Boyd, J. Phys. Chem. A 105 (2001) 7096

I. R. Slagle, D. Sarzynski, D. Gutman, J. Phys. Chem. 91 (1987) 4375

H. M. T. Nguyen, H. T. Nguyen, T.-N. Nguyen, H. Van Hoang, L. Vereecken, J. Phys. Chem. A 118 (2014) 8861

G. F. Bauerfeldt, L. M. M. de Albuquerque, G. Arbilla, E. C. da Silva, J. Mol. Struct.: THEOCHEM 580 (2002) 147

T. K. Choudhury, W. A. Sanders, M. C. Lin, J. Chem. Soc., Faraday Trans. 2 85 (1989) 801

K. C. Manthorne, P. D. Pacey, Can. J. Chem. 56 (1978) 1307

C. Anastasi, J. Chem. Soc., Faraday Trans. 1 79 (1983) 749

H. Hippler, B. Viskolcz, Phys. Chem. Chem. Phys. 4 (2002) 4663

H.-Y. Li, M. Pu, Y.-Q. Ji, Z.-F. Xu, W.-L. Feng, Chem. Phys. 307 (2004) 35

T. K. Choudhury, W. A. Sanders, M. C. Lin, J. Phys. Chem. A 93 (1989) 5143

J.-y. Liu, Z.-s. Li, J.-y. Wu, Z.-g. Wei, G. Zhang, C.-c. Sun, J. Chem. Phys. 119 (2003) 7214

C.-b. Che, H. Zhang, X. Zhang, Y. Liu, B. Liu, J. Phys. Chem. A 107 (2003) 2929

Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009

A. Hatipoglu, D. Vione, Y. Yalçın, C. Minero, Z. Çınar, J. Photochem. Photobiol., A 215 (2010) 59

B. Erem, G. Y. Y. Gurkan, J. Serb. Chem. Soc. 82 (2017) 277

A. D. Becke, J. Chem. Phys. 97 (1992) 9173

A. D. Becke, J. Chem. Phys. 96 (1992) 2155

A. D. Becke, J. Chem. Phys. 98 (1993) 5648

W. Yang, R. G. Parr, C. Lee, Phys. Rev. A 34 (1986) 4586

W. J. Hehre, L. Radom, P. v R. Schleyer, J. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, p. 79

M. P. Andersson, P. Uvdal, J. Phys. Chem. A 109 (2005) 2937

K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 157 (1989) 479

R. S. Zhu, K.-Y. Lai, M. C. Lin, J. Phys. Chem. A 116 (2012) 4466

R.-C. Jian, C. Tsai, L.-C. Hsu, H.-L. Chen, J. Phys. Chem. A 114 (2010) 4655

H.-J. Li, H.-L. Chen, J.-G. Chang, H.-T. Chen, S.-Y. Wu, S.-P. Ju, J. Phys. Chem. A 114 (2010) 5894

M.-K. Hsiao, Y.-H. Chung, Y.-M. Hung, H.-L. Chen, J. Chem. Phys. 140 (2014) 204316

H.-L. Chen, W.-C. Chao, J. Phys. Chem. A 115 (2011) 1133

M. Robson Wright, Advances in Carbohydrate Chemistry, Wiley, New York, 2005, p. 79

S. Canneaux, F. Bohr, E. Henon, J. Comput. Chem. 35 (2014) 82

J. A. Kerr, M. J. Parsonage, Evaluated Kinetic Data on Gas Phase Hydrogen Transfer Reactions of Methyl Radicals, Butterworths, London, 1976, p. 79.

L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances, Hemisphere Pub., New York, 1989

G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 3, Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand, New York, 1966

L. M. Sverdlov, M. A. Kovner, E. P. Krainov, Vibrational Spectra of Polyatomic Molecules, Wiley, New York, 1974

E. Hirota, J. Mol. Spectrosc. 77 (1979) 213

M. W. Chase, National Institute of Technology, NIST-JANAF thermochemical tables, American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology, Washington, D.C.; Woodbury, N.Y., 1998, p. 79

http://garfield.chem.elte.hu/Burcat/burcat.html (October, 2017)

H. J. Curran, Int. J. Chem. Kinet. 38 (2006) 250.