Theoretical study of the addition and hydrogen abstraction reactions of the methyl radical with formaldehyde and hydroxymethylene

Huu Tho Nguyen, Xuan Sang Nguyen

Abstract


The mechanism, thermochemistry and kinetics of the addition and hydrogen-atom abstraction reactions of the methyl radical with formaldehyde and hydroxymethylene were investigated by ab initio calculations. The poten­tial energy surface (PES) of the reactions were calculated by single point cal­cul­ations at the CCSD(T)/6-311++G(3df,2p) level based on geometries at the B3LYP/6-311++G(3df,2p) level. The rate constants of various product chan­nels were estimated by the variational transition state theory (VTST) and are discussed for the seven reactions in the temperature range of 300–2000 K and at 101325 Pa pressure. The calculated results showed that all the hydrogen abs­traction reactions are more favorable than the addition ones.

     


Keywords


rate constants; hydrogen abstraction reactions; CCSD(T); B3LYP

Full Text:

PDF (2,437 kB)

References


R. N. Hazlett, in Frontiers of Free Radical Chemistry, W. A. Pryor, Ed., Academic Press, Cambridge, MA, 1980, pp. 195–223

J. A. Kerr, in Frontiers of Free Radical Chemistry, W. A. Pryor, Ed., Academic Press, Cambridge, MA, 1980, pp. 171–193

A. Phaniendra, D. B. Jestadi, L. Periyasamy, Indian J. Clin. Biochem. 30 (2015) 11

V. Lobo, A. Patil, A. Phatak, N. Chandra, Pharmacogn. Rev. 4 (2010) 118

J. M. Simmie, H. J. Curran, J. Phys. Chem. A 113 (2009) 7834

L. Rutz, H. Bockhorn, J. W. Bozzelli, Prepr. Symp. Am. Chem. Soc., Div. Fuel Chem. 49 (2004) 451

S. L. Boyd, R. J. Boyd, J. Phys. Chem. A 105 (2001) 7096

I. R. Slagle, D. Sarzynski, D. Gutman, J. Phys. Chem. 91 (1987) 4375

H. M. T. Nguyen, H. T. Nguyen, T.-N. Nguyen, H. Van Hoang, L. Vereecken, J. Phys. Chem. A 118 (2014) 8861

G. F. Bauerfeldt, L. M. M. de Albuquerque, G. Arbilla, E. C. da Silva, J. Mol. Struct.: THEOCHEM 580 (2002) 147

T. K. Choudhury, W. A. Sanders, M. C. Lin, J. Chem. Soc., Faraday Trans. 2 85 (1989) 801

K. C. Manthorne, P. D. Pacey, Can. J. Chem. 56 (1978) 1307

C. Anastasi, J. Chem. Soc., Faraday Trans. 1 79 (1983) 749

H. Hippler, B. Viskolcz, Phys. Chem. Chem. Phys. 4 (2002) 4663

H.-Y. Li, M. Pu, Y.-Q. Ji, Z.-F. Xu, W.-L. Feng, Chem. Phys. 307 (2004) 35

T. K. Choudhury, W. A. Sanders, M. C. Lin, J. Phys. Chem. A 93 (1989) 5143

J.-y. Liu, Z.-s. Li, J.-y. Wu, Z.-g. Wei, G. Zhang, C.-c. Sun, J. Chem. Phys. 119 (2003) 7214

C.-b. Che, H. Zhang, X. Zhang, Y. Liu, B. Liu, J. Phys. Chem. A 107 (2003) 2929

Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009

A. Hatipoglu, D. Vione, Y. Yalçın, C. Minero, Z. Çınar, J. Photochem. Photobiol., A 215 (2010) 59

B. Erem, G. Y. Y. Gurkan, J. Serb. Chem. Soc. 82 (2017) 277

A. D. Becke, J. Chem. Phys. 97 (1992) 9173

A. D. Becke, J. Chem. Phys. 96 (1992) 2155

A. D. Becke, J. Chem. Phys. 98 (1993) 5648

W. Yang, R. G. Parr, C. Lee, Phys. Rev. A 34 (1986) 4586

W. J. Hehre, L. Radom, P. v R. Schleyer, J. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, p. 79

M. P. Andersson, P. Uvdal, J. Phys. Chem. A 109 (2005) 2937

K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 157 (1989) 479

R. S. Zhu, K.-Y. Lai, M. C. Lin, J. Phys. Chem. A 116 (2012) 4466

R.-C. Jian, C. Tsai, L.-C. Hsu, H.-L. Chen, J. Phys. Chem. A 114 (2010) 4655

H.-J. Li, H.-L. Chen, J.-G. Chang, H.-T. Chen, S.-Y. Wu, S.-P. Ju, J. Phys. Chem. A 114 (2010) 5894

M.-K. Hsiao, Y.-H. Chung, Y.-M. Hung, H.-L. Chen, J. Chem. Phys. 140 (2014) 204316

H.-L. Chen, W.-C. Chao, J. Phys. Chem. A 115 (2011) 1133

M. Robson Wright, Advances in Carbohydrate Chemistry, Wiley, New York, 2005, p. 79

S. Canneaux, F. Bohr, E. Henon, J. Comput. Chem. 35 (2014) 82

J. A. Kerr, M. J. Parsonage, Evaluated Kinetic Data on Gas Phase Hydrogen Transfer Reactions of Methyl Radicals, Butterworths, London, 1976, p. 79.

L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances, Hemisphere Pub., New York, 1989

G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 3, Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand, New York, 1966

L. M. Sverdlov, M. A. Kovner, E. P. Krainov, Vibrational Spectra of Polyatomic Molecules, Wiley, New York, 1974

E. Hirota, J. Mol. Spectrosc. 77 (1979) 213

M. W. Chase, National Institute of Technology, NIST-JANAF thermochemical tables, American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology, Washington, D.C.; Woodbury, N.Y., 1998, p. 79

http://garfield.chem.elte.hu/Burcat/burcat.html (October, 2017)

H. J. Curran, Int. J. Chem. Kinet. 38 (2006) 250.




DOI: https://doi.org/10.2298/JSC180104040N

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)