Theoretical study of the addition and hydrogen abstraction reactions of the methyl radical with formaldehyde and hydroxymethylene
Main Article Content
Abstract
The mechanism, thermochemistry and kinetics of the addition and hydrogen-atom abstraction reactions of the methyl radical with formaldehyde and hydroxymethylene were investigated by ab initio calculations. The potential energy surface (PES) of the reactions were calculated by single point calculations at the CCSD(T)/6-311++G(3df,2p) level based on geometries at the B3LYP/6-311++G(3df,2p) level. The rate constants of various product channels were estimated by the variational transition state theory (VTST) and are discussed for the seven reactions in the temperature range of 300–2000 K and at 101325 Pa pressure. The calculated results showed that all the hydrogen abstraction reactions are more favorable than the addition ones.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
R. N. Hazlett, in Frontiers of Free Radical Chemistry, W. A. Pryor, Ed., Academic Press, Cambridge, MA, 1980, pp. 195–223
J. A. Kerr, in Frontiers of Free Radical Chemistry, W. A. Pryor, Ed., Academic Press, Cambridge, MA, 1980, pp. 171–193
A. Phaniendra, D. B. Jestadi, L. Periyasamy, Indian J. Clin. Biochem. 30 (2015) 11
V. Lobo, A. Patil, A. Phatak, N. Chandra, Pharmacogn. Rev. 4 (2010) 118
J. M. Simmie, H. J. Curran, J. Phys. Chem. A 113 (2009) 7834
L. Rutz, H. Bockhorn, J. W. Bozzelli, Prepr. Symp. Am. Chem. Soc., Div. Fuel Chem. 49 (2004) 451
S. L. Boyd, R. J. Boyd, J. Phys. Chem. A 105 (2001) 7096
I. R. Slagle, D. Sarzynski, D. Gutman, J. Phys. Chem. 91 (1987) 4375
H. M. T. Nguyen, H. T. Nguyen, T.-N. Nguyen, H. Van Hoang, L. Vereecken, J. Phys. Chem. A 118 (2014) 8861
G. F. Bauerfeldt, L. M. M. de Albuquerque, G. Arbilla, E. C. da Silva, J. Mol. Struct.: THEOCHEM 580 (2002) 147
T. K. Choudhury, W. A. Sanders, M. C. Lin, J. Chem. Soc., Faraday Trans. 2 85 (1989) 801
K. C. Manthorne, P. D. Pacey, Can. J. Chem. 56 (1978) 1307
C. Anastasi, J. Chem. Soc., Faraday Trans. 1 79 (1983) 749
H. Hippler, B. Viskolcz, Phys. Chem. Chem. Phys. 4 (2002) 4663
H.-Y. Li, M. Pu, Y.-Q. Ji, Z.-F. Xu, W.-L. Feng, Chem. Phys. 307 (2004) 35
T. K. Choudhury, W. A. Sanders, M. C. Lin, J. Phys. Chem. A 93 (1989) 5143
J.-y. Liu, Z.-s. Li, J.-y. Wu, Z.-g. Wei, G. Zhang, C.-c. Sun, J. Chem. Phys. 119 (2003) 7214
C.-b. Che, H. Zhang, X. Zhang, Y. Liu, B. Liu, J. Phys. Chem. A 107 (2003) 2929
Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009
A. Hatipoglu, D. Vione, Y. Yalçın, C. Minero, Z. Çınar, J. Photochem. Photobiol., A 215 (2010) 59
B. Erem, G. Y. Y. Gurkan, J. Serb. Chem. Soc. 82 (2017) 277
A. D. Becke, J. Chem. Phys. 97 (1992) 9173
A. D. Becke, J. Chem. Phys. 96 (1992) 2155
A. D. Becke, J. Chem. Phys. 98 (1993) 5648
W. Yang, R. G. Parr, C. Lee, Phys. Rev. A 34 (1986) 4586
W. J. Hehre, L. Radom, P. v R. Schleyer, J. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, p. 79
M. P. Andersson, P. Uvdal, J. Phys. Chem. A 109 (2005) 2937
K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 157 (1989) 479
R. S. Zhu, K.-Y. Lai, M. C. Lin, J. Phys. Chem. A 116 (2012) 4466
R.-C. Jian, C. Tsai, L.-C. Hsu, H.-L. Chen, J. Phys. Chem. A 114 (2010) 4655
H.-J. Li, H.-L. Chen, J.-G. Chang, H.-T. Chen, S.-Y. Wu, S.-P. Ju, J. Phys. Chem. A 114 (2010) 5894
M.-K. Hsiao, Y.-H. Chung, Y.-M. Hung, H.-L. Chen, J. Chem. Phys. 140 (2014) 204316
H.-L. Chen, W.-C. Chao, J. Phys. Chem. A 115 (2011) 1133
M. Robson Wright, Advances in Carbohydrate Chemistry, Wiley, New York, 2005, p. 79
S. Canneaux, F. Bohr, E. Henon, J. Comput. Chem. 35 (2014) 82
J. A. Kerr, M. J. Parsonage, Evaluated Kinetic Data on Gas Phase Hydrogen Transfer Reactions of Methyl Radicals, Butterworths, London, 1976, p. 79.
L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances, Hemisphere Pub., New York, 1989
G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 3, Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand, New York, 1966
L. M. Sverdlov, M. A. Kovner, E. P. Krainov, Vibrational Spectra of Polyatomic Molecules, Wiley, New York, 1974
E. Hirota, J. Mol. Spectrosc. 77 (1979) 213
M. W. Chase, National Institute of Technology, NIST-JANAF thermochemical tables, American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology, Washington, D.C.; Woodbury, N.Y., 1998, p. 79
http://garfield.chem.elte.hu/Burcat/burcat.html (October, 2017)
H. J. Curran, Int. J. Chem. Kinet. 38 (2006) 250.