Theoretical study of the addition and hydrogen abstraction reactions of methyl radical with formaldehyde and hydroxymethylene

Nguyen Huu Tho, Nguyen Xuan Sang

Abstract


The mechanism, thermochemistry and kinetic of the addition and hydrogen-atom abstraction reactions of methyl radical with formaldehyde and hydroxymethylene have been investigated by ab initio calculations. The potential energy surface (PES) of the reactions have been calculated by single point calculations at the CCSD(T)/6-311++G(3df,2p) level based on geometries at the B3LYP/6-311++G(3df,2p) level. Rate constants of various product channels were estimated and discussed for the seven reactions in the temperature range of 300-2000K and at 101325 Pa pressure were obtained by variational transition state theory (VTST). Calculated results showed that all the hydrogen abstraction reactions are more favorable than the addition ones.

     


Keywords


rate constants; hydrogen abstraction reactions; CCSD(T); B3LYP

Full Text:

PDF (1,799 kB)

References


R. N. Hazlett, Free Radical Reactions Related To Fuel Research, In Frontiers of Free Radical Chemistry, edited by William A. Pryor, Academic Press, 1980, pp. 195-223

J. A. Kerr, The Role Of Free Radicals In Atmospheric Chemistry, In Frontiers of Free Radical Chemistry, edited by William A. Pryor, Academic Press, 1980, pp. 171-193

3. A. Phaniendra, D. B. Jestadi, L. Periyasamy, Ind. J. Clin. Biochem. 30 (2015) 11

V. Lobo, A. Patil, A. Phatak, N. Chandra, Pharmacog. Rev.4 (2010) 118

J. M. Simmie, H. J. Curran, J. Phys. Chem., A 113 (2009) 7834.

B. H. Rutz L., Bozzelli J. W., Am. Chem. Soc., Div. Fuel Chem. 49 (2004) 451

S. L. Boyd, R. J. Boyd, J. Phys. Chem., A 105 (2001) 7096

I. R. Slagle, D. Sarzynski, D. Gutman, J. Phys. Chem. 91 (1987) 4375

H. M. T. Nguyen, H. T. Nguyen, T.-N. Nguyen, H. Van Hoang, L. Vereecken, J. Phys. Chem., A 118 (2014) 8861

G. F. Bauerfeldt, L. M. M. de Albuquerque, G. Arbilla, E. C. da Silva, J. Mol. Struct.: THEOCHEM 580 (2002) 147

T. K. Choudhury, W. A. Sanders, M. C. Lin, J. Chem. Soc., Faraday Trans. 2 85 (1989) 801

K. C. Manthorne, P. D. Pacey, Can. J. Chem. 56 (1978) 1307

C. Anastasi, J. Chem. Soc., Faraday Trans. 1 79 (1983) 749

H. Hippler, B. Viskolcz, Phys. Chem. Chem. Phys. 4 (2002) 4663.

H.-Y. Li, M. Pu, Y.-Q. Ji, Z.-F. Xu, W.-L. Feng, Chem. Phys. 307 (2004) 35.

T. K. Choudhury, W. A. Sanders, M. C. Lin, J. Phys. Chem., A 93 (1989) 5143

J.-y. Liu, Z.-s. Li, J.-y. Wu, Z.-g. Wei, G. Zhang, C.-C. Sun, J. Chem. Phys.119 (2003) 7214

C.-b. Che, H. Zhang, X. Zhang, Y. Liu, B. Liu, J. Phys. Chem., A 107 (2003) 2929

GAUSSIAN 09, Revision C.01, Gaussian Inc., Wallingford CT (2010)

A. Hatipoglu, D. Vione, Y. Yalçın, C. Minero, Z. Çınar, J. Photochem. Photobiol., A: Chem. 215 (2010) 59.

E. Bahar, G. Yelda Yalcin, J. Serb. Chem. Soc. 82 (2017) 277

A. D. Becke, J. Chem. Phys. 97 (1992) 9173

A. D. Becke, J. Chem. Phys. 96 (1992) 2155

A. D. Becke, J. Chem. Phys. 98 (1993) 5648

W. Yang, R. G. Parr, C. Lee, Phys. Rev., A 34 (1986) 4586

R. L. Hehre W. , Schleyer P. V. R. , and Pople J. A. , 30, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, p. 79

M. P. Andersson, P. Uvdal, J. Phys. Chem., A 109 (2005) 2937

K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 157 (1989) 479

R. S. Zhu, K.-Y. Lai, M. C. Lin, J. Phys. Chem., A 116 (2012) 4466

R.-C. Jian, C. Tsai, L.-C. Hsu, H.-L. Chen, J. Phys. Chem., A 114 (2010) 4655

H.-L. C. Han-Jung Li, Jee-Gong Chang, Hsin-Tsung Chen, Shiuan-Yau Wu, and Shin-Pon Ju, J. Phys. Chem., A 114 (2010)

M.-K. Hsiao, Y.-H. Chung, Y.-M. Hung, H.-L. Chen, J. Chem. Phys. 140 (2014) 204316

H.-L. Chen, W.-C. Chao, J. Phys. Chem., A 115 (2011) 1133

M. Robson Wright, Advances in Carbohydrate Chemistry, John Wiley & Sons, Ltd, 2005, p. 79

S. Canneaux, F. Bohr, E. Henon, J. Comput. Chem. 35 (2014) 82

L. V. V. Gurvich, I. V.; Alcock, C. B., Thermodynamic Properties of Individual Substances, in: 1989, Hemisphere Pub. Co., New York

G. Herzberg, Electronic spectra and electronic structure of polyatomic molecules, in, Van Nostrand, New York, 1966

K. M. A. Sverdlov L.M., Krainov E. P., Vibrational Spectra of Polyatomic Molecules, in, Wiley, New York, 1974

E. Hirota, J. Mol. Spectrosc. 77 (1979) 213

J. A. Kerr, M. J. Parsonage, Evaluated Kinetic Data on Gas Phase Hydrogen Transfer Reactions of Methyl Radicals, Butterworths, London, 1976, p. 79

M. W. Chase, S. National Institute of, Technology, NIST-JANAF thermochemical tables, American Chemical Society ; American Institute of Physics for the National Institute of Standards and Technology, [Washington, D.C.]; Woodbury, N.Y., 1998, p. 79

E. B. Goos, A.; Ruscic, B., http://garfield.chem.elte.hu/Burcat/burcat.html (October, 2017).

H. J. Curran, Int. J. Chem. Kin. 38 (2006) 250.




DOI: https://doi.org/10.2298/JSC180104040N

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)