Elaboration of nanostructured polyurethane foams / OMMT using a twin-screw extruder in counter-rotating mode

Main Article Content

Yasmine Mahmoud
Zitouni Safidine
Hichem Zeghioud

Abstract

In this work, we propose a new elaboration method of nanostructured foam polyurethane/Organo-modified Montmorillonite (PUR/OMMT) by in situ polymerization. The twin-screw extruder in contra-rotative mode combined with reaction injection moulding (RIM) as polymerization process was used. The blended polyols, copolymer polyol (CPP) were included between the OMMT layers via the twin-screw extruder. Both formulation of the PUR and inter-foliar distance in the montmorillonite (MMT) have been optimized. The effect of some parameters such as OMMT content and catalyst (triethylenediamine for PUR 3 and triethylenediamine+diamino-1,2 propane for PUR 4) was also undertaken. The synthesized materials (OMMT, PUR and PUR/OMMT) were characterized by different methods; Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscope (SEM). The results of evaluation tests like flammability and the tensile for PUR 3+OMMT foams revealed that the optimum properties were obtained for PUR 3+2%OMMT. The PUR 4 foam admits mechanical and flame-retardant properties better than the PUR 3 (r = -NCO/-OH = 1.15) foam. However, the PUR 4 + 2 % OMMT formula exhibits the most delayed flame diffusion and pronounced rigidity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
Y. Mahmoud, Z. Safidine, and H. Zeghioud, “Elaboration of nanostructured polyurethane foams / OMMT using a twin-screw extruder in counter-rotating mode”, J. Serb. Chem. Soc., vol. 83, no. 12, pp. 1363–1378, Dec. 2018.
Section
Polymers
Author Biographies

Yasmine Mahmoud, Laboratoire de Chimie Macromoléculaire, Ecole militaire Polytechnique, BP 17, Bordj El Bahri

Laboratoire de Chimie Macromoléculaire, Ecole militaire Polytechnique

Zitouni Safidine, Laboratoire de Chimie Macromoléculaire, Ecole militaire Polytechnique, BP 17, Bordj El Bahri

Laboratoire de Chimie Macromoléculaire, Ecole militaire Polytechnique

Hichem Zeghioud, Laboratoire de Génie des Procèdes, Universite Badji Mokhetar

Laboratoire de Génie des Procèdes

References

X. Cao, L. J. Lee, T. Widya, C. Macosko, Polymer 46 (2005) 775 (https://doi.org/-10.1016/j.polymer.2004.11.028)

L. Madaleno, R. Pyrz, A. Crosky, L-R. Jensen, J. C. M. Rauhe, V. Dolomanova, A. M. M. V. de B. Timmons, J. J. C. Pinto, J. Norman, Composites 44 (2013) 1 (https://doi.org/-10.1016/j.compositesa.2012.08.015)

S. Estravís, J. Tirado-Mediavilla, M. Santiago-Calvo, J. L. Ruiz-Herrero, F. Villafañe, M. Á. Rodríguez-Pérez, Eur. Polym. J. 80 (2016) 1. (http://dx.doi.org/10.1016/j.eu-rpolymj.2016.04.026)

G. Sung, J. W. Kim, J. H. Kim, J. Ind. Eng. Chem. 44 (2016) 99 (http://dx.doi.org/-10.1016/j.jiec.2016.08.014)

P. S. Khobragade, D. P. Hansora, J. B. Naik, A. Chatterjee, Polym. Degrad. Stab. 130 (2016) 194. (https://doi.org/10.1016/j.polymdegradstab.2016.06.001 ).

Y. Gui, X. Liu, Y. Tian, N. Ding, Z. Wang, Colloids Surf. A 414 (2012) 274. (https://doi.org/10.1016/j.colsurfa.2012.08.028 ).

L. Zhang, M. Zhang, Y. Zhou, L. Hu, polym. Degrad. Stab. 98 (2013) 2784 (https://doi.org/10.1016/j.polymdegradstab.2013.10.015)

X. Zheng, G. Wang, W. Xu, Polym. Degrad. Stab. 101 (2014), 32 (https://doi.org/-10.1016/j.polymdegradstab.2014.01.015)

N. Gama, L. C. Costa, V. Amaral, A. Ferreira, A. B-Timmons, Compos. Sci. Technol. 138 (2017) 24 (http://dx.doi.org/10.1016/j.compscitech.2016.11.007)

L. Zhang, M. Zhang, Y. Zhou, L. Hu, Polym. Degrad. Stab. 98 (2013) 2784 (http://dx.doi.org/10.1016/j.polymdegradstab.2013.10.015)

W. Xi, L. Qian, Y. Chen, J. Wang, X. Liu, Polym. Degrad. Stab. 122 (2015) 36. (http://dx.doi.org/10.1016/j.polymdegradstab.2015.10.013)

W. Xi, L. Qian, Z. Huang, Y. Cao, L. Li, Polym. Degrad. Stab. 130 (2016) 97 (http://dx.doi.org/10.1016/j.polymdegradstab.2016.06.003)

R. Sonnier, B. Otazaghine, A. Viretto, G. Apolinario, P. Ienny, Eur. Polym. J. 68 (2015) 313 (http://dx.doi.org/10.1016/j.eurpolymj.2015.05.005)

F. Salaün, M. Lewandowski, I. Vroman, G. Bedek, S. Bourbigot, Polym. Degrad. Stab. 96 (2011) 131 (https://doi.org/10.1016/j.polymdegradstab.2010.10.009)

L. Gao, G. Zheng, Y. Zhou, L. Hu, G. Feng, M. Zhang, Polym. Degrad. Stab. 101 (2014) 92 (https://doi.org/10.1016/j.polymdegradstab.2013.12.025)

A. Lorenzetti, S. Besco, D. Hrelja, M. Roso, E. Gallo, B. Schartel, M. Modesti, Polym. Degrad. Stab. 98 (2013) 2366 (https://doi.org/10.1016/j.polymdegradstab.2013.08.002)

H-B. Chen, Y-Z. Wang, M. S-Soto, D. A. Schiraldi, Polymer 53 (2012) 5825 (https://doi.org/10.1016/j.polymer.2012.10.029)

W. Xu, G. Wang, X. Zheng, Polym. Degrad. Stab. 111 (2015) 142 (https://doi.org/-10.1016/j.polymdegradstab.2014.11.008)

C. E. Corcionea, P. Prinari, D. Cannoletta, G. Mensitieri, A. Maffezzoli, Int. J. Adhes. Adhes. 28 (2008) 91 (https://doi.org/10.1016/j.ijadhadh.2006.12.004)

J. Pavličević, M. Špirkova, A. Strachota, K. M. Szecsenyic, N. Lazić, J. B-Simendić, Thermochim Acta 509 (2010) 73 (https://doi.org/10.1016/j.tca.2010.06.005)

F. Cao, S.C. Jana, Polymer 48 (2007) 3790 (https://doi.org/10.1016/j.po¬ly-mer.2007.04.027)

Ł. Piszczyk, M. Strankowski, M. Danowska, J. T. Haponiuk, M. Gazda, Eur. Polym. J. 48 (2012) 1726 (https://doi.org/10.1016/j.eurpolymj.2012.07.001)

J. Xiong, Z. Zheng, H. Jiang, S. Ye, X. Wang, Composites 38 (2007) 132 (https://doi.org/10.1016/j.compositesa.2006.01.014)

N. Sarier, E. Onder, Thermochim Acta 510 (2010) 113 (https://doi.org/10.1016/-j.tca.2010.07.004)

B. Yıldız, M. O. Seydibeyoglu, F. S. Guner, Polym. Degrad. Stab. 94 (2009) 1072 (https://doi.org/10.1016/j.polymdegradstab.2009.04.006)

M. Sonnenschein, B. L. Wendt, A. K. Schrock, J-M. Sonney, A. J. Ryan, Polymer 49 (2008) 934 (https://doi.org/10.1016/j.polymer.2008.01.008)

W. Wang, Y. Pan, H. Pan, W. Yang, K. M. Liew, L. Song, Y. Hu, Compo. Sci. Technol. 123 (2016) 212 (https://doi.org/10.1016/j.compscitech.2015.12.014)

J-C. Yang, Z-J. Cao, Y-Z. Wang, D. A. Schiraldi, Polymer 66 (2015) 86 (https://doi.org/10.1016/j.polymer.2015.04.022)

Y. Qian, W. Liu, Y. T. Park, C.I. Lindsay, R. Camargo, C.W. Macosko, A. Stein, Polymer 53 (2012) 5060 (http://dx.doi.org/10.1016/j.polymer.2012.09.008)

L. Song, Y. Hu, Y. Tang, R. Zhang, Z. Chen, W. Fan, Polym. Degrad. Stab. 87 (2005) 111 (https://doi.org/10.1016/j.polymdegradstab.2004.07.012)

N. Pauzi, R. A. Majid, M.H. Dzulkifli, M.Y. Yahya, Composites 67 (2014) 521 (http://dx.doi.org/10.1016/j.compositesb.2014.08.004)

G. Verma, A. Kaushika, A.K. Ghosh, Prog. Org. Coat. 99 (2016) 282 (http://dx.doi.org/10.1016/j.porgcoat.2016.06.001)

J. Xiong, Y. Liu, X. Yang, X. Wang, Polym. Degrad. Stab. 86 (2004) 549 (http://dx.doi.org/10.1016/j.polymdegradstab.2004.07.001)

F. J. Leij, J. H. Dane, Analytical and numerical solutions of the transport equation for an exchangeable solute in a layred soil, Lowell T. Frobish, aubum university, Alabama, 1989. (https://aurora.auburn.edu/bitstream/handle/11200/1542/0696AGRO.pdf?sequence=1&isAllowed=y )

S. Lv, W. Zhou, S. Li, W. Shi, Eur. Polym. J. 44 (2008) 1613. (https://doi.org/10.1016/¬j.eurpolymj.2008.04.005)

J. M. Yeh, C. T. Yao, C. F. Hsieh, L. H. Lin, P. L. Chen, J. C. Wuc, H. C. Yang, C. P. Wua, Eur. Polym. J. 44 (2008) 3046 (https://doi.org/10.1016/j.eurpolymj.2008.05.037)

H. Moustafa, H. Galliard, L. Vidal, A. Dufresne, Eur. Polym. J. (2016) (http://dx.doi.org/¬10.1016/j.eurpolymj.2016.12.009)

M. El Achaby, H. Ennajih, F.Z. Arrakhiz, A. El Kadib, R. Bouhfid, E. Essassi, A. Qais, Composites 51 (2013) 310 (http://dx.doi.org/10.1016/j.compositesb.2013.03.009)

Ö. Eğri, K. Salimi, S. Eğri, E. PișKin, Z. M. O. Rzayev, Carbohydr. Polym. 137 (2016) 111 (http://dx.doi.org/10.1016/j.carbpol.2015.10.043)

L. Biesekia, F. Bertella, H. Treichel, F. G. Penha, S. B. C. Pergher, Mat. Res. 16 (5) (2013) 1122 (http://dx.doi.org/10.1590/S1516-14392013005000114)

D.E. Kherroub, M. Belbachir, S. Lamouri, L. Bouhadjar and K. Chikh, OJC 29 (4) (2013) 1429 (http://dx.doi.org/10.13005/ojc/290419)

C.S. Carriço, T. Fraga, V.M.D. Pasa, Eur. Polym. J. 85 (2016) 53 (http://dx.doi.org/-10.1016/j.eurpolymj.2016.10.012)

A. Hejna , M. Kirpluks, P. Kosmela, U. Cabulisb, J. Haponiuka, Ł. Piszczyk, IND CROP PROD 95 (2017) 113 ( http://dx.doi.org/10.1016/j.indcrop.2016.10.023)

H. Zeghioud, S. Lamouri, Y. Mahmoud, T. Hadj-Ali, J. Serb. Chem. Soc. 80-11 (2015) 1435 (http://dx.doi.org/10.2298/JSC150305064Z)

M. C. Saha, Md. E. Kabir, S. Jeelani, Mat. Sci. Eng. A-Struct. 479 (2008) 213 (http://dx.doi.org/10.1016/j.msea.2007.06.060)

E.A. Moawed, M.A. El-Hagrasy, N.E.M. Embaby, J. Taiwan Inst. Chem. Eng. 70 (2017) 382. ( http://dx.doi.org/10.1016/j.jtice.2016.10.037 ).

W. Yang, S. Luo, B. Zhang, Z. Huang and X. Tang, Appl. Surf. Sci. 254 (2008) 7427 (http://dx.doi.org/10.1016/j.apsusc.2008.05.343 )

H. Lian, W. Chang, Q. Liang, C. Hu, R. Wang, L. Zu and Y. Liu, RSC Adv. 7 (2017) 46221 (http://dx.doi.org/10.1039/c7ra07476j)

H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Nanoscale 8 (26) (2016) 12977. (http://dx.doi.org/10.1039/C6NR02216B)

M. Kumar, J.S. Chung, B.-S. Kong, E.J. Kim, S.H. Hur, Mater Lett 106 (2013) 319. (http://dx.doi.org/10.1016/j.matlet.2013.05.059)

R. Jahanmardi, B. Kangarlou, A.R. Dibazar, J. Nanostructure Chem. 1 (2013) 1 (http://dx.doi.org10.1186/2193-8865-3-82)