Effects of thiourea on the kinetics and electrochemical nucleation of tin electrodeposition from stannous chloride bath in acidic medium
Main Article Content
Abstract
The effects of thiourea (TU) on the kinetics and electrochemical nucleation of tin from stannous chloride bath in acidic medium have been investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry. CV results showed that the tin reduction is a one-step reaction and indicated that TU inhibited the reduction of tin ions at high concentration. EIS analysis showed that the electrodeposition process of tin is affected by the addition of TU. The nucleation mechanism of tin was studied using both Sharifker–Hills (SH) and Palomar–Pardavé (PP) models. SH model indicated that hydrogen evolution and tin reduction occurred simultaneously. Non-dimensional current-time transients curves based on PP model revealed that the tin nucleation followed 3D progressive mechanism without TU and with 0.01 M TU, while the nucleation process changes to 3D instantaneous in presence of 0.1 M TU. However, at 1 M TU, the nucleation mechanism is located between instantaneous and progressive model. The proton reduction reaction was inhibited at all concentrations of TU. Quantitative determination showed that in the presence of TU, the diffusion coefficient of tin species, the hydrogen evolution rate constant, the nucleation rate constant and the number of active sites were decreased.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
F. C. Walsh, C. T. J. Low, Surf. Coat. Technol. 288 (2016) (http://dx.doi.org/10.1016/j.surfcoat.2015.12.081)
R. H. Kim, D. H. Nam, H. S. Kwon, J. Power Sources 195 (2010) 506 (http://dx.doi.org/10.1016/j.jpowsour.2010.01.069)
Z. Du, S. Zhang, T. Jiang, Z. Bai, Electrochim. Acta 55 (2010) 3537 (http://dx.doi.org/10.1016/j.electacta.2010.01.065)
T. Noriyuki, O. Ryuji, F. Masahisa, F. Shin, K. Maruo,Y. Ikuo, J. Power Sources 107 (2002) 48
L. Luo, H. Qiao,W. Xu, D. Li, J. Zhu, C. Chen, Y. Lu, P. Zhu, X. Zhang, Q.Wei, J. Solid State Electrochem. 21 (2017) 1385 (http://dx.doi.org/10.1007/s10008-016-3501-3)
S. S. Hortikar, V.S. Kadam, A. B. Rathi, C.V. Jagtap, H. M. Pathan, I. S. Mulla, P.V. Adhyapak, J. Solid State Electrochem. 21 (2017) 2707 (http://dx.doi.org/10.1007/s10008-017-3642-z)
R. Animesh, A. Sudhir, W.Yogesh, S. Manish, U. Govind, R. Sunit, P. Kashinath, G.Suresh, C. Ratna, J. Solid State Electrochem. 21 (2016) 9 (http://dx.doi.org/10.1007/s10008-016-3328-y)
B. Ruiz-Camacho, A. Medina-Ramírez, R. Fuentes-Ramírez, C. M. Gómez, J. Solid State Electrochem. 21 (2017) 2449 (http://dx.doi.org/10.1007/s10008-017-3567-6)
A. N. Correia, M.X. Façanha, P. Lima-Neto, Surf. Coat. Technol. 201 (2007) 7216 (http://dx.doi.org/10.1016/j.surfcoat.2007.01.029)
I. A. Carlos, E. D. Bidoia, E. M. J. A. Pallone, M. R. H. Almeida, C. A. C. Souza, Surf. Coat. Technol. 157 (2002) 14 (PII:S0257-8972Ž02.00139-1)
E. Rudnik, Ionics 19 (2013) 1047 (http://dx.doi.org/10.1007/s11581-012-0819-4)
M. Biçer, İ. Şişman, Appl. Surf. Sci. 257 (2012) 2944 (http://dx.doi.org/10.1016/j.apsusc.2010.10.096)
B. Tutunari, I. Prunaru. An. Univer. Bucuresti Chim. 18 (2009) 67
F. Xiao, X. Shen, F. Ren, A. A. Volinsky, Int. J. Minerals Metall. Mater. 20 (2013) 472 (http://dx.doi.org/d 10.1007/s12613-013-0753-0)
A. Sharma, K. Dasa, H. J. Fecht, S. Das, Appl. Surf. Sci. 314 (2014) 516 (http://dx.doi.org/ 10.1016/j.apsusc.2014.07.037)
F. J. Barry, V. J. Cunnane, J. Electroanal. Chem. 537 (2002) 151 (https://doi.org/10.1016/S0022-0728(02)01266-4)
C. T. J. Low, F. C. Walsh, Electrochim. Acta 53 (2008) 5280 (http://dx.doi.org/10.1016/j.electacta.2008.01.093)
A. Collazo, R. Figueroa, X. R. Nóvoa, C. Pérez, Surf. Coat. Technol. 280 (2015) 8 (http://dx.doi.org/10.1016/j.surfcoat.2015.08.052)
E. Gómez, E. Guaus, F. Sanz, E. Vallés, J. Appl. Electrochem. 465 (1999) 63 (https://doi.org/10.1023/A:1024439023251)
C. Han, Q. Liu, D. G. Ivey, Electrochim. Acta 54 (2009) 3419 (http://dx.doi.org/10.1016/j.electacta.2008.12.064)
Y. Goh, A. S. M. A. Hasseb, M. F. M. Sabri, Electrochim. Acta 90 (2013) 265 (http://dx.doi.org doi: 10.1016/j.electacta.2012.12.036)
B. Tutunari, A. Samide, Optoelect. Adv. Mater. 2 (2008) 659
J. L. P. Siqueira, I. A. Carlos, J. Power Sources 177 (2008) 211 (http://dx.doi.org/10.1016/j.jpowsour.2007.11.02)
X. Huang, Y. Chen, J. Zhou, Z. Zhang, J. Zhang, J. Electroanal. Chem. 709 (2013) 83 (http://dx.doi.org/10.1016/j.jelechem.2013.09.012)
B. Neveu, F. Lallemand, G. Poupon, Z. Mekhalif, Appl. Surf. Sci. 252 (2006) 3561 (http://dx.doi.org /10.1016/j.apsusc.2005.05.024)
N. M. Martyak, R. Seefeldt, Electrochim. Acta 49 (2004) 4303 (http://dx.doi.org/10.1016/j.electacta.2004.03.039)
H. Wang, M Pritzker, Electrochim. Acta 53 (2008) 2430 (http://dx.doi.org/10.1016/j.electacta.2007.10.023)
S. Joseph, G. J. Phatak, Mater. Sci. Eng., B 168 (2010) 219 (http://dx.doi.org/10.1016/j.mseb.2010.01.017)
C. Han, Q. Liu, D. G. Ivey, Electrochim. Acta 53 (2008) 8332 (http://dx.doi.org/10.1016/j.electacta.2008.06.037)
C. T. J. Low, F. C. Walsh, Surf. Coat. Technol. 202 (2008) 1339 (http://dx.doi.org/10.1016/j.surfcoat.2007.06.032)
M. R. Lee, S. H. Na, H. S. Park, S. J. Suh, J. Nanosci. Nanotechnol. 14 (2014) 9560 (http://dx.doi.org/10.1166/jnn.2014.1017)
U. Sahaym, S. L. Miller, M. G. Norton, Mater. Lett. 64 (2010) 1547 (http://dx.doi.org/10.1016/j.matlet.2010.04.036)
H. M. Maltanava, T. N. Vorobyova, O. N. Vrublevskaya, Surf. Coat. Technol. 254 (2014) 388 (http://dx.doi.org/10.1016/j.surfcoat.2014.06.04)
H. Hosoya, J. Tanaka and S. Nagakura, Bull. Chem. Soc. Japan 33 (1960) 850 (http://doi.org/10.1246/bcsj.33.850)
G. Cui, X. Ke, H. Liu,J. Zhao, S. Song, P. K. Shen, J. Phys. Chem., C 112 (2008)13546 (http://dx.doi.org/10.1021/jp8018099 CCC: $40.75)
B. Scharifker, G. Hills, Electrochim. Acta 28 (1983) 879 (http://doi.org/10.1016/0013-4686(83)85163-9)
M. Palomar-Pardavé, B. Scharifker, E. M. Arce, M. Romero-Romo, Electrochim. Acta 50 (2005) 4736 (http://dx.doi.org/10.1016/j.electacta.2005.03.004)
J. Lei, J.G. Yang, J. Chem. Technol. Biotechnol. 92 (2017) 891 (http://dx.doi.org/10.1002/jctb.5070)
L. A. Azpeitia, C. A. Gervasi, A. E. Bolz´an, Electrochim. Acta 257 (2017) 388 (http://doi.org/doi:10.1016/j.electacta.2017.10.064).