Synthesis of crosslinked PVA-ceramic composite membrane for phenol removal from aqueous solution

Vandana Gupta, Jayapal Anandkumar

Abstract


In this study, thin-film composite membrane (CM) was fabricated for phenol-water separation using formaldehyde crosslinked polyvinylalcohol (PVA) coating on fly ash-fuller clay ceramic substrate. Thin-film was created using 10 % PVA with different concentrations of formaldehyde (1-5 g). The characteri­zation of synthesized membrane such as swelling and chemical stability, permeation study, molecular weight cut off (MWCO), scanning electron microscopy (SEM) and contact angle analysis was carried out to optimize the membrane. Stability of active layer increases with increase in amount of formaldehyde whereas the hydrophilicity, degree of swelling, flux and pore size decreases. Smallest pore (1.91 nm) was obtained in the active layer when PVA crosslinked with 3 g formaldehyde (PF3). Phenol-water separation was conducted with PF3 to optimize the process parameters such as feed concentration, pH and operating pressure. Maximum phenol separation (85 %) was obtained at 207 kPa for 200 mg L-1 of feed phenol. High phenol removal was found at pH 6.0 and thereafter it decreases in alkaline pH. Phenol removal decreases from 80.6 % to 19.8 % with increase in pressure from 207 to 414 kPa whereas flux increases from 5.3 to 52.38 L m-2 h-1. Results demonstrate that fabricated CM can be successfully used for phenol-water separation.

Keywords


phenol removal; composite membrane; fuller clay; PVA; fly ash

Full Text:

PDF (2,064 kB)

References


B. Commoner, J. Clean. Prod. 5 (1997) 125 (https://doi.org/10.1016/S0959-6526(97)00011-5)

Integrated risk information system. https://archive.epa.gov/teach/web/pdf/benz_summary.pdf 2016 (accessed: 4.7.2016)

A. Mixa, C. Staudt, Int. J. Cheme. (2008) 1 (http://dx.doi.org/10.1155/2008/319392)

J. Sawai, N. Ito, T. Minami, M. Kikuchi, J. Membr. Sci. 252 (2005) 1 (https://doi.org/10.1016/j.memsci.2004.06.018)

M. Sagehashi, T. Nomura, H. Shishido, A. Sakoda, Bioresour. Technol. 98 (2007) 2018 (https://doi.org/10.1016/j.biortech.2006.08.022)

G. M. Zeng, K. Xu, J. H. Huang, X. Li, Y. Y. Fang, Y. H. Qu, J. Membr. Sci. 310 (2008) 149 (https://doi.org/10.1016/j.memsci.2007.10.046)

D. P. Zagklis, A. I. Vavouraki, M. E. Kornaros, C.A. Paraskeva, J. Hazard. Mater. 285 (2015) 69 (https://doi.org/10.1016/j.jhazmat.2014.11.038)

M. Hemmati, N. Nazari, A. Hemmati, S. Shirazian, J. Ind. Eng. Chem. 21 (2015) 1410 (https://doi.org/10.1016/j.jiec.2014.06.015)

A. Bodalo, E. Gomez, A. M. Hidalgo, M. Gomez, M. D. Murcia, I. Lopez, Desalination. 245 (2009) 680 (https://doi.org/10.1016/j.desal.2009.02.037)

M. J. González-Muñoz, S. Luque, J. R. Álvarez, J. Coca, J. Membr. Sci. 213 (2003) 181 (https://doi.org/10.1016/S0376-7388(02)00526-4)

Y. Liu, M. Meng, J. Yao, Z. Da, Y. Feng, Y. Yan, C. Li, Chem. Eng. J. 286 (2016) 622 (https://doi.org/10.1016/j.cej.2015.10.063)

B. K. Nandi, R. Uppaluri, M. K. Purkait, J. Membr. Sci. 330 (2009) 246 (https://doi.org/10.1016/j.memsci.2008.12.071)

S. Jana, M. K. Purkait, K. Mohanty, J. Membr. Sci. 382 (2011) 243 (https://doi.org/10.1016/j.memsci.2011.08.011)

P. Mittal, S. Jana, K. Mohanty, Desalination. 282 (2011) 54 (https://doi.org/10.1016/j.desal.2011.06.071)

I. Jedidi, S. Sai, S. Khmakem, N. Elloumi-ammar, A. Fourati, A. Charf, Arabian J. Chem. 2 (2009) 31 (https://doi.org/10.1016/j.arabjc.2009.07.006)

D. Vasanth, G. Pugazhenthi, R. Uppaluri, Desalination. 320 (2013) 86 (https://doi.org/10.1016/j.desal.2013.04.018)

S. Y. Hu, Y. Zhang, D. Lawless, X. Feng, J. Membr. Sci. 417 (2012) 34 (https://doi.org/10.1016/j.memsci.2012.06.010)

T. Puspasari, N. Pradeep, K. V. Peinemann, J. Membr. Sci. 491 (2015) 132 (https://doi.org/10.1016/j.memsci.2015.05.002)

S. Y. Li, R. Srivastava, R. S. Parnas, J. Membr. Sci. 363 (2010) 287 (https://doi.org/10.1016/j.memsci.2010.07.042)

Y. Matsumoto, M. Sudoh, Y. Suzuki, J. Membr. Sci. 158 (1999) 55 (https://doi.org/10.1016/S0376-7388(99)00032-0)

B. Han, J. Li, C. Chen, C. Xu, S. R. Wickramasinghe, Trans. ICheme. 81(a) (2003) 1385 (https://doi.org/10.1205/026387603771339609)

A. L. Ahmad, N. M. Yusuf, B. S. Ooi, Desalination. 287 (2012) 35 (https://doi.org/10.1016/j.desal.2011.12.003)

B. Bolto, T. Tran, M. Hoang, Z. Xie, Prog. Polym. Sci. 34 (2009) 969 (https://doi.org/10.1016/j.progpolymsci.2009.05.003)

A. Hasimi, A. Stavropoulou, K. G. Papadokostaki, M. Sanopoulou, Eur. Polym. J. 44 (2008) 4098 (https://doi.org/10.1016/j.eurpolymj.2008.09.011)

A. Higuchi, T. D. Lijima, Polymer. 26 (1985) 1833 (https://doi.org/10.1016/0032-3861(85)90011-4)

S. Jana, M. K. Purkait, K. Mohanty, Desalin. Water Treat. 37 (2012) 321 (http://dx.doi.org/10.1080/19443994.2012.661574)

R. Rudra,V. Kumar, P. P. Kundu, RSC Adv. 5 (2015) 83436 (https://doi.org/ 10.1039/c5ra16068e)

T.A. Peters, C. H. S. Poeth, N. E. Benes, H. C. W. M. Buijs, F. F. Vercauteren, J.T.F. Keurentjes, J. Membr. Sci. 276 (2006) 42 (https://doi.org/10.1016/j.memsci.2005.06.066)

G. Bourne, M. S. Buiser, T. V. Casey, S. Keenan, J. L. Lanphere, J. Li, E. P. Mckenna, Z. Minasian, D. Rao, US 7, 611, 542 B2, (2009)

K. Hunger, N. Schmeling, H. B. T. Jeazet, C. Janiak, C. Staudt, K. Kleinermanns, Membranes. 2 (2012) 727 (https://doi.org/ 10.3390/membranes2040727)

Y. L. Lin, J. Environ. Eng. 139 (2013) 127 (https://doi.org/10.1061/(ASCE)EE.1943-7870.0000623)

R. Mukherjee, S. De, J. Hazard. Mater. 265 (2014) 8 (https://doi.org/10.1016/j.jhazmat.2013.11.012)

K. J. Kim, A. G. Fanen, R. Ben-Aim, M. G. Liu, G. Jonsson, I. C. Tessaro, A. P. Broek, D. Bargeman, J. Membr. Sci. 87 (1994) 35 (https://doi.org/10.1016/0376-7388(93)E0044-E)

APHA 5530: Standard Method for Examination of Water and Wastewater, American Public Health Association - Washington DC (2012)

J. Han, J. Fu, R. B. Schoch, Lab Chip. 8 (2008) 23 (https://doi.org/ 10.1039/b714128a).




DOI: https://doi.org/10.2298/JSC180424083G

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)