Synthesis of crosslinked PVA-ceramic composite membrane for phenol removal from aqueous solution
Main Article Content
Abstract
In this study, the thin-film composite membrane (TFCM) was fabricated for phenol–water separation using formaldehyde crosslinked polyvinylalcohol (PVA) coating on fly ash-fuller clay ceramic substrate. Thin film was created using 10 % PVA with different concentrations of formaldehyde (1–5 g). The characterization of synthesized membrane such as swelling and chemical stability, permeation study, molecular weight cut off (MWCO), scanning electron microscopy (SEM) and contact angle analysis was carried out to optimize the membrane. The stability of active layer increases with increase in the amount of formaldehyde, whereas the hydrophilicity, degree of swelling, flux and pore size decrease. The smallest pore (1.91 nm) was obtained in the active layer when PVA crosslinked with 3 g formaldehyde (PF3). Phenol–water separation was conducted with PF3 to optimize the process parameters, such as feed concentration, pH and operating pressure. Maximum phenol separation (85 %) was obtained at 207 kPa for 200 mg L-1 of feed phenol. High phenol removal was found at pH 6.0 and thereafter it decreased in alkaline pH. Phenol removal decreased from 80.6 to 19.8 % with the increase in pressure from 207 to 414 kPa, whereas flux increased from 5.3 to 52.38 L m-2 h-1. The results demonstrate that fabricated CM can be successfully used for phenol–water separation.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
B. Commoner, J. Clean. Prod. 5 (1997) 125 (https://doi.org/10.1016/S0959-6526(97)00011-5)
Integrated risk information system. https://archive.epa.gov/teach/web/pdf/benz_summary.pdf (accessed: 4.7.2016)
A. Mixa, C. Staudt, Int. J. Cheme. (2008) 1 (http://dx.doi.org/10.1155/2008/319392)
J. Sawai, N. Ito, T. Minami, M. Kikuchi, J. Membr. Sci. 252 (2005) 1 (https://doi.org/10.1016/j.memsci.2004.06.018)
M. Sagehashi, T. Nomura, H. Shishido, A. Sakoda, Bioresour. Technol. 98 (2007) 2018 (https://doi.org/10.1016/j.biortech.2006.08.022)
G. M. Zeng, K. Xu, J. H. Huang, X. Li, Y. Y. Fang, Y. H. Qu, J. Membr. Sci. 310 (2008) 149 (https://doi.org/10.1016/j.memsci.2007.10.046)
D. P. Zagklis, A. I. Vavouraki, M. E. Kornaros, C.A. Paraskeva, J. Hazard. Mater. 285 (2015) 69 (https://doi.org/10.1016/j.jhazmat.2014.11.038)
M. Hemmati, N. Nazari, A. Hemmati, S. Shirazian, J. Ind. Eng. Chem. 21 (2015) 1410 (https://doi.org/10.1016/j.jiec.2014.06.015)
A. Bodalo, E. Gomez, A. M. Hidalgo, M. Gomez, M. D. Murcia, I. Lopez, Desalination 245 (2009) 680 (https://doi.org/10.1016/j.desal.2009.02.037)
M. J. González-Muñoz, S. Luque, J. R. Álvarez, J. Coca, J. Membr. Sci. 213 (2003) 181 (https://doi.org/10.1016/S0376-7388(02)00526-4)
Y. Liu, M. Meng, J. Yao, Z. Da, Y. Feng, Y. Yan, C. Li, Chem. Eng. J. 286 (2016) 622 (https://doi.org/10.1016/j.cej.2015.10.063)
B. K. Nandi, R. Uppaluri, M. K. Purkait, J. Membr. Sci. 330 (2009) 246 (https://doi.org/10.1016/j.memsci.2008.12.071)
S. Jana, M. K. Purkait, K. Mohanty, J. Membr. Sci. 382 (2011) 243 (https://doi.org/10.1016/j.memsci.2011.08.011)
P. Mittal, S. Jana, K. Mohanty, Desalination 282 (2011) 54 (https://doi.org/10.1016/j.desal.2011.06.071)
I. Jedidi, S. Sai, S. Khmakem, N. Elloumi-ammar, A. Fourati, A. Charf, Arabian J. Chem. 2 (2009) 31 (https://doi.org/10.1016/j.arabjc.2009.07.006)
D. Vasanth, G. Pugazhenthi, R. Uppaluri, Desalination 320 (2013) 86 (https://doi.org/10.1016/j.desal.2013.04.018)
S. Y. Hu, Y. Zhang, D. Lawless, X. Feng, J. Membr. Sci. 417 (2012) 34 (https://doi.org/10.1016/j.memsci.2012.06.010)
T. Puspasari, N. Pradeep, K. V. Peinemann, J. Membr. Sci. 491 (2015) 132 (https://doi.org/10.1016/j.memsci.2015.05.002)
S. Y. Li, R. Srivastava, R. S. Parnas, J. Membr. Sci. 363 (2010) 287 (https://doi.org/10.1016/j.memsci.2010.07.042)
Y. Matsumoto, M. Sudoh, Y. Suzuki, J. Membr. Sci. 158 (1999) 55 (https://doi.org/10.1016/S0376-7388(99)00032-0)
B. Han, J. Li, C. Chen, C. Xu, S. R. Wickramasinghe, Trans. ICheme, А 81 (2003) 1385 (https://doi.org/10.1205/026387603771339609)
A. L. Ahmad, N. M. Yusuf, B. S. Ooi, Desalination 287 (2012) 35 (https://doi.org/10.1016/j.desal.2011.12.003)
B. Bolto, T. Tran, M. Hoang, Z. Xie, Prog. Polym. Sci. 34 (2009) 969 (https://doi.org/10.1016/j.progpolymsci.2009.05.003)
A. Hasimi, A. Stavropoulou, K. G. Papadokostaki, M. Sanopoulou, Eur. Polym. J. 44 (2008) 4098 (https://doi.org/10.1016/j.eurpolymj.2008.09.011)
A. Higuchi, T. D. Lijima, Polymer 26 (1985) 1833 (https://doi.org/10.1016/0032-3861(85)90011-4)
S. Jana, M. K. Purkait, K. Mohanty, Desalin. Water Treat. 37 (2012) 321 (http://dx.doi.org/10.1080/19443994.2012.661574)
R. Rudra,V. Kumar, P. P. Kundu, RSC Adv. 5 (2015) 83436 (https://doi.org/ 10.1039/c5ra16068e)
T.A. Peters, C. H. S. Poeth, N. E. Benes, H. C. W. M. Buijs, F. F. Vercauteren, J.T.F. Keurentjes, J. Membr. Sci. 276 (2006) 42 (https://doi.org/10.1016/j.memsci.2005.06.066)
G. Bourne, M. S. Buiser, T. V. Casey, S. Keenan, J. L. Lanphere, J. Li, E. P. Mckenna, Z. Minasian, D. Rao, US 7, 611, 542 B2 (2009)
K. Hunger, N. Schmeling, H. B. T. Jeazet, C. Janiak, C. Staudt, K. Kleinermanns, Membranes 2 (2012) 727 (https://doi.org/ 10.3390/membranes2040727)
Y. L. Lin, J. Environ. Eng. 139 (2013) 127 (https://doi.org/10.1061/(ASCE)EE.1943-7870.0000623)
R. Mukherjee, S. De, J. Hazard. Mater. 265 (2014) 8 (https://doi.org/10.1016/j.jhazmat.2013.11.012)
K. J. Kim, A. G. Fanen, R. Ben-Aim, M. G. Liu, G. Jonsson, I. C. Tessaro, A. P. Broek, D. Bargeman, J. Membr. Sci. 87 (1994) 35 (https://doi.org/10.1016/0376-7388(93)E0044-E)
APHA 5530: Standard Method for Examination of Water and Wastewater, American Public Health Association, Washington, DC, 2012
J. Han, J. Fu, R. B. Schoch, Lab Chip. 8 (2008) 23 (https://doi.org/ 10.1039/b714128a).