A new method of processing CO2 and magnesite slag simultaneously
Main Article Content
Abstract
Calcining magnesite slag to capture CO2 is a new and simple method of processing CO2 and magnesite slag simultaneously. In this work, the CO2 capture capacity by calcined magnesite slag in wet flue gas simulated by adding water vapour was investigated. The magnesite slag exhibits excellent CO2 adsorption performance, with 3.01 mmol/g CO2 adsorption capacity, which is reduced to 2.18 mmol/g after 8 cycles and is obvious superior to magnesite. The structure and characterization of the magnesite slag are examined by XRF, FT-IR, TG-DSC, XRD, CO2-TPD and BET. It can be confirmed by X-ray fluorescence analysis that the key component of magnesite slag is MgSiO3 and MgCO3. The results of this work indicate that the magnesite slag is an available adsorbent for CO2 adsorption after calcination.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
K. S. Lackner, Science 300 (2003) 1677 (http://dx.doi.org/10.1126/science.1079033)
Z. H. Li, Y. Wang, K. Xu et al., Fuel Process Technol. 151 (2016) 101 (http://dx.-doi.org/10.1016/j.fuproc.2016.05.019)
N. Yang, R. Wang, Hua Gong Xue Bao 64 (2013) 128 (in Chinese)
P. Z. Li, X. J. Wang, Y. X. Li et al., Micropor. Mesopor. Mat. 176 (2013) 194 (https://doi.org/10.1016/j.micromeso.2013.03.052)
X. Xie, Y. J. Li, C. T. Liu et al., Fuel Process Technol. 138 (2015) 500 (http://dx.doi-.org/10.1016/j.fuproc.2015.06.028)
W. J. Xie, R. Wang, Petroleum Coal 56 (2014) 418 (http://www.vurup.sk/wp-content/uploads/dlm_uploads/2017/07/pc_4_2014_wang_318.pdf)
N. Yang, R. Wang, J. Serb. Chem. Soc. 80 (2015) 265 (http://dx.doi.org/10.2298/-JSC220214103Y)
I. Zamboni, C. Courson, A. Kiennemann, Appl. Catal., B-Environ. 203 (2017) 154 (http://dx.doi.org/10.1016/j.apcatb.2016.10.024)
S. J. Han, Y. Bang, H. J. Kwon, H. C. Lee et al., Chem. Eng. J. 242 (2014) 357 (http://dx.doi.org/10.1016/j.cej.2013.12.092)
S. W. Bian, J. Baltrusaitis, P. Galhotra et al., J. Mater. Chem. 20 (2010) 8705 (http://dx.-doi.org/10.1039/C0JM01261K)
H. Vishwanath, S. Raghavendra, G. S. Jeong, Chem. Eng. J. 308 (2017) 177 (http://dx.-doi.org/10.1016/j.cej.2016.09.052)
A. Zukal, J. Pastva, J. Cejka, Micropor. Mesopor. Mat. 167 (2013) 44 (http://dx.doi.org/¬10.1016/j.micromeso.2012.05.026)
M. Bhagiyalakshmi, P. Hemalatha, M. Ganesh et al., Fuel 90 (2011) 1662 (http://dx.doi.¬org/10.1016/j.fuel.2010.10.050)
X. Jiao, L. Li, N. Zhao et al., Energy Fuel 27 (2013) 5407 (http://dx.doi.org/-10.1021/ef401085a)
J. Y. Wang, L. Huang, Q. Z. Zheng et al., J. Ind. Eng. Chem. 36 (2016) 255 (http://dx.¬doi.org/10.1016/j.jiec.2016.02.010)
J. Y. Wang, X. Y. Mei, L. Huang et al., J. Energy Chem. 24 (2015) 127 (http://dx.doi.¬org/10.1016/S2095-4956(15)60293-5)
Q. Wang, H. H. Tay, Z. Y. Zhong et al., Energy Environ. Sci. 5 (2012) 7526 (http://dx.¬doi.org/10.1016/j.jechem.2017.01.003)
J. Y. Wang, Y. Yang, L. Jia, et al., J. Nanosci. Nanotechnol. 18 (2018) 2956 (http://dx.doi.org/ 10.1166/jnn.2018.14381)
J. Y. Wang, L. Huang, R. Yang et al., Energy Environ. Sci 7 (2014) 3478 (http://dx.doi.¬org/10.1039/c4ee01647e)
N. Yang, P. Ning, K. Li et al., J. Taiwan Inst. Chem., E 86 (2018) 73 (https://doi.-org/10.1016/j.jtice.2018.02.006)
E. F. Chen, T. Zhang, Liao Ning Hua Gong 36 (2007) 363 (in Chinese)
C. S. Zhao, Y. Fan, M. H. Xia et al., Shen Yang Gong Cheng Xue Bao 4 (2008) 1 (in Chinese)
A. Samanta, Z. An, G. K. H. Shimizu et al., Ind. Eng. Chem. Res. 51 (2012) 1438 (http://dx.doi.org/10.1021/ie200686q)
D. Bahamon, L. F. Vega, Chem. Eng. J. 284 (2016) 437 (http://dx.doi.org/10.1016/-j.cej.2015.08.098)
Y. H. Kim, V. A. Tuan, M. K. Park et al., Micropor. Mesopor. Mat. 197 (2014) 299 (http://dx.doi.org/10.1016/j.micromeso.2014.06.026)
Z. X. Ling, B. Zheng, Q. L. Du et al., Solid State Sci. 13 (2011) 2073 (http://dx.doi.org/10.1016/j.solidsatatesciences.2010.01.013)
B. Margandan, H. Pushparaj, G. Mani et al., Fuel 90 (2011) 1662 (http://dx.doi.org/-10.1016/j.fuel.2010.10.050)
B. Margandan, J. Y. Lee, H. T. Jang, Int. J. Green Gas Con. 4 (2010) 51 (http://dx.doi.-org/10.1016/j.ijggc.2009.08.001)
Z. X. Zhao, H. X. Dai, Y. C. Du et al., Mater. Chem. and Phys. 128 (2011) 348 (http://dx.doi.org/10.1016/j.matchemphys.2011.02.073)
K. K. Han, Y. Zhou, W. G. Lin et al., Micropor. Mesopor. Mat. 169 (2013) 112 (http://dx.doi.org/10.1016/j.micromeso.2012.11.004)
H. Zhao, W. Yan, Z. Bian et al., Solid State Sci. 14 (2012) 250 (http://dx.doi.org/-10.1016/j.solidstatesciences.2011.11.026)
G. Song, Y. D. Ding, X. Zhu et al., Colloids Surfaces, A 470 (2015) 39 (http://dx.doi.-org/10.1016/j.colsurfa.2015.01.061)
A. Zukal, J. Pastva, J. Cejka, Micropor. Mesopor. Mat. 167 (2013) 44 (http://dx.doi.-org/10.1016/j.micromeso.2012.05.026)
G. Song, X. Zhu, R. Chen et al., Chem. Eng. J. 283 (2016) 175 (http://dx.doi.org/-10.1016/j.cej.2015.07.055)
Y. Sun, J. Zhang, C. Wen et al., J. Taiwan Inst. Chem., E 63 (2016) 170 (http://dx.doi.¬org/10.1016/j.jtice.2016.02.030)
G. B. Elvira, G. C. Francisco, M. Victor et al., J. Environ. Sci.-China 57 (2017) 418 (http://dx.doi.org/10.1016/j.jes.2016.11.016)
S. Zhang, W. Q. Cai, J. Yu et al., Chem. Eng. J. 310 (2017) 216 (http://dx.doi.org/-10.1016/j.cej.2016.10.114).