A new method of processing CO2 and magnesite slag simultaneously

Na Yang, Ping Ning, Kai Li, Jun Ya Wang

Abstract


Calcining magnesite slag to capture CO2 is a new and simple method of processing CO2 and magnesite slag simultaneously. In this work, the CO2 capture capacity by calcined magnesite slag in wet flue gas simulated by adding water vapor is investigated. The magnesite slag exhibits excellent CO2 adsorption per­formance, with 3.01 mmol/g CO2 adsorption capacity, which is reduced to 2.18 mmol/g after 8 cycles and is obvious superior to magnesite. The structure and characterization of the magnesite slag are examined by XRF, FT-IR, TG-DSC, XRD, CO2-TPD and BET. By XRF analysis, it can be confirmed that the key component of magnesite slag is MgSiO3 and MgCO3. The results of this work indicate that the magnesite slag is an available adsorbent for CO2 adsorption after calcination.


Keywords


greenhouse gas; calcined condition; slag; adsorption capacity

Full Text:

PDF (1,622 kB)

References


K. S. Lackner, Science, 300 (2003) 1677 (http://dx.doi.org/10.1126/science.1079033)

Z. H. Li, Y. Wang, K. Xu et al., Fuel Process Technol. 151 (2016) 101 (http://dx.-doi.org/10.1016/j.fuproc.2016.05.019)

N. Yang, R. Wang, Hua Gong Xue Bao 64 (2013) 128 (in Chinese)

P. Z. Li, X. J. Wang, Y. X. Li et al., Micropor. Mesopor. Mat., 176 (2013) 194 (https://doi.org/10.1016/j.micromeso.2013.03.052)

X. Xie, Y. J. Li, C. T. Liu et al., Fuel Process Technol. 138 (2015) 500 (http://dx.doi-.org/10.1016/j.fuproc.2015.06.028)

W. J. Xie, R. Wang, Petroleum & Coal 56 (2014) 418 (http://www.vurup.sk/wp-content/uploads/dlm_uploads/2017/07/pc_4_2014_wang_318.pdf)

N. Yang, R. Wang, J. Serb. Chem. Soc. 80 (2015) 265 (http://dx.doi.org/10.2298/¬JSC220214103Y)

I. Zamboni, C. Courson, A. Kiennemann, Appl. Catal. B- Environ. 203 (2017) 154 (http://dx.doi.org/10.1016/j.apcatb.2016.10.024)

S. J. Han, Y. Bang, H. J. Kwon, H. C. Lee et al., Chem. Eng. J. 242 (2014), 357-363 (http://dx.doi.org/10.1016/j.cej.2013.12.092)

S. W. Bian, J. Baltrusaitis, P. Galhotra et al., J. Mater. Chem. 20 (2010) 8705 (http://dx.-doi.org/10.1039/C0JM01261K)

H. Vishwanath, S. Raghavendra, G. S. Jeong, Chem. Eng. J. 308 (2017) 177 (http://dx.-doi.org/10.1016/j.cej.2016.09.052)

A. Zukal, J. Pastva, J. Cejka, Micropor. Mesopor. Mat. 167 (2013) 44 (http://dx.doi.org/-10.1016/j.micromeso.2012.05.026)

M. Bhagiyalakshmi, P. Hemalatha, M. Ganesh et al., Fuel 90 (2011) 1662 (http://dx.doi.-org/10.1016/j.fuel.2010.10.050)

X. Jiao, L. Li, N. Zhao et al., Energ. Fuel 27 (2013) 5407 (http://dx.doi.org/¬10.1021/ef401085a)

J. Y. Wang, L. Huang, Q. Z. Zheng et al., J. Ind. Eng. Chem. 36 (2016) 255 (http://dx.-doi.org/10.1016/j.jiec.2016.02.010)

J. Y. Wang, X. Y. Mei, L. Huang et al., J. Energy Chem. 24 (2015) 127 (http://dx.doi.¬org/10.1016/S2095-4956(15)60293-5)

Q. Wang, H. H. Tay, Z. Y. Zhong et al., Energy Environ. Sci. 5 (2012) 7526 (http://dx.-doi.org/10.1016/j.jechem.2017.01.003)

J. Y. Wang, Y. Yang, L. Jia, et al., J. Nanosci. Nanotechnol. 18 (2018) 2956 (http://dx.doi.org/ 10.1166/jnn.2018.14381)

J. Y. Wang, L. Huang, R. Yang et al., Energy Environ. Sci 7 (2014) 3478 (http://dx.doi.-org/10.1039/c4ee01647e)

N. Yang, P. Ning, K. Li et al., J. Taiwan Inst. Chem. E. 86 (2018) 73 (https://doi.-org/10.1016/j.jtice.2018.02.006)

E. F. Chen, T. Zhang, Liao Ning Hua Gong 36 (2007) 363 (in Chinese)

C. S. Zhao, Y. Fan, M. H. Xia et al., Shen Yang Gong Cheng Xue Bao 4 (2008) 1

A. Samanta, Z. An, G. K. H. Shimizu et al., Industrial Eng. Chem. Res. 51 (2012) 1438 (http://dx.doi.org/10.1021/ie200686q)

D. Bahamon, L. F. Vega, Chem. Eng. J. 284 (2016) 437 (http://dx.doi.org/10.1016/¬j.cej.2015.08.098)

Y. H. Kim, V. A. Tuan, M. K. Park et al., Micropor. Mesopor. Mat. 197 (2014) 299 (http://dx.doi.org/10.1016/j.micromeso.2014.06.026)

Z. X. Ling, B. Zheng, Q. L. Du et al., Solid State Sci. 13 (2011) 2073 (http://dx.doi.org/10.1016/j.solidsatatesciences.2010.01.013)

B. Margandan, H. Pushparaj, G. Mani et al., Fuel 90 (2011) 1662 (http://dx.doi.org/-10.1016/j.fuel.2010.10.050)

B. Margandan, J. Y. Lee, H. T. Jang, Int. J. Greenh. Gas Con. 4 (2010) 51 (http://dx.doi.-org/10.1016/j.ijggc.2009.08.001)

Z. X. Zhao, H. X. Dai, Y. C. Du et al., Mater. Chem. and Phys. 128 (2011) 348 (http://dx.doi.org/10.1016/j.matchemphys.2011.02.073)

K. K. Han, Y. Zhou, W. G. Lin et al., Micropor. Mesopor. Mat. 169 (2013) 112 (http://dx.doi.org/10.1016/j.micromeso.2012.11.004)

H. Zhao, W. Yan, Z. Bian et al., Solid State Sci. 14 (2012) 250 (http://dx.doi.org/-10.1016/j.solidstatesciences.2011.11.026)

G. Song, Y. D. Ding, X. Zhu et al., Colloid Surface A 470 (2015) 39 (http://dx.doi.-org/10.1016/j.colsurfa.2015.01.061)

A. Zukal, J. Pastva, J. Cejka, Micropor. Mesopor. Mat. 167 (2013) 44 (http://dx.doi.-org/10.1016/j.micromeso.2012.05.026)

G. Song, X. Zhu, R. Chen et al., Chem. Eng. J. 283 (2016) 175 (http://dx.doi.org/¬10.1016/j.cej.2015.07.055)

Y. Sun, J. Zhang, C. Wen et al., J. Taiwan Inst. Chem. E., 63 (2016) 170 (http://dx.doi.-org/10.1016/j.jtice.2016.02.030)

G. B. Elvira, G. C. Francisco, M. Victor et al., J. Environ. Sci-China 57 (2017) 418 (http://dx.doi.org/10.1016/j.jes.2016.11.016)

S. Zhang, W. Q. Cai, J. Yu et al., Chem. Eng. J. 310 (2017) 216 (http://dx.doi.org/¬10.1016/j.cej.2016.10.114)




DOI: https://doi.org/10.2298/JSC180528077Y

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)