Preconcentration of ultra-traces of Cu(II) in water samples using SBA-15 sorbent modified with a thiocarbohydrazide ligand prior to determination by flame atomic absorption spectrometry

Main Article Content

Mahmood Payehghadr
Hamidreza Haghgoo Qezelje
Farzaneh Nourifard
Abdolmohammad Attaran
Mehdi Kalhor

Abstract

A simple, reliable and rapid method for the extraction of ultra-trace copper(II) using nanoporous SBA-15 sorbent modified with a thiocarbo­hyd­razide ligand, and determination by flame atomic absorption spectrometry is presented. The optimum parameters of the method were obtained as pH of aqueous solution 5, sorbent amount 2 mg, stirring time 20 min and 0.4 M HCl solution as the eluent solvent. This method has a breakthrough volume greater than 1500 mL with a concentration factor of more than 300, linear range 0.8–2500.0 µg L-1, limit of detection 0.253 µg L-1 and limit of quantification 0.844 µg L-1 for copper(II). The capacity of 2 mg of modified SBA-15was found to be 123.00±0.04 mg g-1. Standard deviations were 3.3, 2.3 and 2.1 % for 1, 2 and 4 mg mL-1, respectively (n = 5). This method was successfully applied for the determination of copper(II) in different real samples, especially in the food samples.

Downloads

Metrics

PDF views
355
Jun 04 '19Jun 07 '19Jun 10 '19Jun 13 '19Jun 16 '19Jun 19 '19Jun 22 '19Jun 25 '19Jun 28 '19Jul 01 '193.0
| |

Article Details

How to Cite
[1]
M. Payehghadr, H. Haghgoo Qezelje, F. Nourifard, A. Attaran, and M. Kalhor, “Preconcentration of ultra-traces of Cu(II) in water samples using SBA-15 sorbent modified with a thiocarbohydrazide ligand prior to determination by flame atomic absorption spectrometry”, J. Serb. Chem. Soc., vol. 84, no. 5, pp. 489–501, Jun. 2019.
Section
Analytical Chemistry

References

A. J. D. Oliveira, S. P. Pereira, P. I. V. D. Silva, J. M. Saeki, M. A. U. Martines, V. D. A. Pedrosa, G. R. D. Castro, Acta Chim. Slov. 62 (2015) 111 (http://dx.doi.org/10.17344/acsi.2014.787)

R. N. Reeve, Introduction to Environmental Analysis, Wiley, Chichester, 2002 (https://doi.org/10.1002/0470845783.ch1)

M. Hossein, N. Dalali, A. Karimi, K. Dastanra, Turk. J. Chem. 34 (2010) 805 (https://doi.org/10.3906/kim-1002-22)

A. Bazzi, J. O. Nriagu, A. M. Linder, J. Environ. Monit. 10 (2008) 1226 (http://dx.doi.org/ 10.1039/B809465A)

C. C. Leite, A. Jesus, L. Kolling, M. F. Ferrão, D. Samios, M. M. Silva, Spectrochim. Acta, B 142 (2018) 62 (https://doi.org/10.1016/j.sab.2018.01.018)

W. S. Zhong, T. Ren, L. J. Zhao, J. Food Drug Anal. (JFDA) 24 (2016) 46 (https://doi.org/10.1016/j.jfda.2015.04.010)

A. E. Greenberg, L. S. Clesceri, A. D. Eaton, Standard Methods for Examination of Water and Waste Water, 19th ed., American Public Health Association, Washington DC, 1995 (https://trove.nla.gov.au/work/16646325)

A. Bagheri, M. Behbahani, M. M. Amini, O. Sadeghi, M. Taghizade, L. Baghayi, M. Salarian, Talanta 89 (2012) 455 (https://doi.org/10.1016/j.talanta.2011.12.062)

K. Oguri, G. Shimoda, Y. Tatsumi, Chem. Geol. 157 (1999) 189 (https://doi.org/10.1016/S0009-2541(98)00205-8

I. Kostić, T. Anđelković, D. Anđelković, R. Nikolić, A. Bojić, T. Cvetković, G. Nikolić, J. Serb. Chem. Soc. 81 (2016) 255 (https://doi.org/10.2298/JSC150917094K)

S. Igarashi, N. Ide, Y. Takagai, Anal. Chim. Acta 424 (2000) 263 (https://doi.org/10.1016/S0003-2670(00)01082-5)

M. N. Akieh, M. Lahtinen, A. Väisänen, M. Sillanpää, J. Hazard. Mater. 152 (2008) 640 (https://doi.org/10.1016/j.jhazmat.2007.07.049)

A. Nasrollahpour, S. M. J. Moradi, S. E. Moradi, J. Serb. Chem. Soc. 82 (2017) 551 (https://doi.org/10.2298/JSC161013035N)

M. Bartosiak, K. Jankowski, J. Giersz, J. Pharm. Biomed. Anal. 155 (2018) 135 (https://doi.org/10.1016/j.jpba.2018.03.058)

M. A. Farajzadeh, A. Yadegahri, J. Ind. Eng. Chem. 59 (2018) 377 (https://doi.org/10.1016/j.jiec.2017.10.046)

B. Zhao, M. He, B. Chen, B. Hu, Talanta 183 (2018) 268 (https://doi.org/10.1016/j.talanta.2018.02.081)

J. Paluch, R. B. R. Mesquita, V. Cerdà, J. Kozak, M. Wieczorek, A. O. S. Rangel, Talanta 185 (2018) 316 (https://doi.org/10.1016/j.talanta.2018.03.091)

L. A. Berrueta, B. Gallo, F. Vicente, Chromatographia 40 (1995) 474 (https://doi.org/10.1007/BF02269916)

M. C. Hennion, J. Chromatogr., A 856 (1999) 3 (https://doi.org/10.1016/S0021-9673(99)00832-8)

R. H. Hafezi, A. M. H. Shabani, S. Dadfarnia, N. Baghban, J. Braz. Chem. Soc. 25 (2014) 1975 (http://dx.doi.org/10.5935/0103-5053.20140179)

Z. Li, J. Li. Y. Wang, Y. Wei, Spectrochim. Acta, A 117 (2014) 422 (https://doi.org/10.1016/j.saa.2013.08.045)

H. M. Jiang, Z. P. Yan, Y. Zhao, X. Hu, H. Z. Lian, Talanta 94 (2012) 251 (https://doi.org/10.1016/j.talanta.2012.03.035)

S. Dadfarnia, M. Talebi, A. M. H. Shabani, Z. B. Amani, Croat. Chem. Acta 80 (2007) 17 (https://hrcak.srce.hr/12808)

D. Budimirović, Z. S. Veličković, Z. Bajić, D. L. Milošević, J. B. Nikolić, S. Z. Drmanić, A. D. Marinković, J. Serb. Chem. Soc. 82 (2017) 1175 (https://doi.org/10.2298/JSC170422066B)

M. Kumar, D. P. S. Rathore, A. K. Singh, Fresenius J. Anal. Chem. 390 (2001) 377 (https://doi.org/10.1007/s002160000681)

C. F. Pool, Trac. Trend Anal. Chem. 22 (2003) 362 (https://doi.org/10.1016/S0165-9936(03)00605-8)

H. Ebrahimzadeh, N. Tavassoli, O. Sadeghi, M. M. Amini, M. Jamali, Microchim. Acta 172 (2011) 479 (https://doi.org/10.1007/s00604-010-0503-1)

A. Walcarius, L. Mercier, J. Mater. Chem. 20 (2010) 4478 (https://doi.org/10.1039/B924316J)

K. Mehrani, A. Mehrani, M. M. Amini, O. Sadeghi, N. Tavassoli, Microchim. Acta 173 (2011) 521 (https://doi.org/10.1007/s00604-011-0590-7)

W. Yan, B. Chen, S. M. Mahurin, E. W. Hagaman, S. Dai, S. H. Overbury, J. Phys. Chem., B 108 (2004) 2793 (https://doi.org/10.1021/jp037713z)

T. Kang, T. Park, Y. Yi, J. Ind. Eng. Chem. Res. 43 (2004) 1478 (https://doi.org/10.1021/ie030590k)

J. Li, T. Qi, L. Wang, C. Liu, Y. Zhang, Mater. Lett. 61 (2007) 3197 (https://doi.org/10.1016/j.matlet.2006.11.079)

A. M. Liu, S. Hidajat, D. Y. Zhao, Chem. Commun. 230 (2000) 1145 (https://doi.org/10.1039/B002661L)

M. M. Amini, O. Sadeghi, N. Tavassoli, Microchim. Acta 173 (2011) 521 (https://doi.org/10.1007/s00604-011-0590-7)

D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024. (https://doi.org/10.1021/ja974025i)

A. S. M. Chong, X. S. Zhao, J. Phys. Chem., B 172 (2003) 12650 (https://doi.org/10.1021/jp035877)

L. Hajiaghababaei, B. Ghasemi, A. R. Badiei, H. Goldooz, M. R. Ganjali, G. Z. Mohammadi, J. Environ. Sci. 24 (2012) 1347 (https://doi.org/10.1016/S1001-0742(11)60892-9)

Z. M. Manzoor, E. Yilmaz, M. Soylak, Talanta 174 (2017) 645 (https://doi.org/10.1016/j.talanta.2017.06.068

M. Naghizadeh, M. A. Taher, M. Behzadi, F. H. Moghaddam, Iran. J. Energy (IJEE) 7 (2016) 359 (https://doi.org/10.5829/idosi.ijee.2016.07.04.06).