Determination of the pKa for caffeic acid in mixed solvent using the net analyte signal method and the ab initio theory

Main Article Content

Abbas Dadras
Ali Benvidi
Mansour Namazian
Saleheh Abbasi
Marzieh Dehghan Tezerjani
Moharram Roozgari
Reza Tabaraki

Abstract

Due to the biological effects of phenolic acid components, polyphenol-
-rich foods are a significant part of human and animal diets. In this study, the acidity constants of caffeic acid (3,4-dihydroxycinnamic acid) in binary mixtures of ethanol–water were determined spectrophotometrically using the introduced net analyte signal (NAS) algorithm and an ab initio quantum mechanical method. The NAS is an efficient chemometric algorithm for analysis of acid–base equilibrium systems by a spectrophotometric method. At different pH values, the distribution of acid species is obtained from an absorption data matrix and this procedure enabled the pKa of caffeic acid to be obtained alternatively. The results showed that pKa1 (4.02, 4.26, 4.39, 4.57 and 5.11) and pKa2 (8.43, 8.68, 8.79, 9.00 and 9.34) were increased by increasing the percent ethanol in water (0, 10, 20, 30 and 40 vol. %) and these results were in agreement with the results of the Gaussian method. The ab initio calculated Gibbs energy change showed that para-hydroxy group is more acidic than meta-hydroxy group. The red shifts of different species of caffeic acid obtained using the ab initio quantum mechanical method are in good agreement with the results of UV–Vis spectroscopy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Dadras, “Determination of the pKa for caffeic acid in mixed solvent using the net analyte signal method and the ab initio theory”, J. Serb. Chem. Soc., vol. 84, no. 4, pp. 391–403, Apr. 2019.
Section
Theoretical Chemistry

References

D. O. Demirkol, B. Gulsunoglu, C. Ozdemir, A. Dincer, F. Zihnioglu, S. Timur, Food Anal. Methods 5 (2012) 244 (https://doi.org/10.1007/s12161-011-9226-0)

C. Türkben, E. Sarıburun, C. Demir, V. Uylaşer, Food Anal. Methods 3 (2010) 144 (https://doi.org/10.1007/s12161-009-9102-3)

S. Cheraghi, M.A. Taher, H. Karimi-Maleh, J. Food Comp. Anal. 62 (2017) 254 (https://doi.org/10.1016/j.jfca.2017.06.006)

E. Psomiadou, M. Tsimidou, J. Agric. Food Chem. 50 (2002) 716 (https://doi.org/10.1021/jf0108462)

J. H. Chen, C.-T. Ho, J. Agric. Food Chem. 45 (1997) 2374 (https://doi.org/10.1021/jf970055t)

Y. Sato, S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, M. Sugawara, K. Iseki, Int. J. Pharm. 403 (2011) 136 (https://doi.org/10.1016/j.ijpharm.2010.09.035)

S. H. Nam, Y. M. Kim, M. K. Walsh, Y. J. Wee, K. Y. Yang, J. A. Ko, S. Han, T. Thanh Hanh Nguyen, J.Y. Kim, D. Kim, J. Agric. Food Chem. 65 (2017) 2743 (https://doi.org/10.1021/acs.jafc.7b00344)

M. Meloun, S. Bordovská, K. Kupka, J. Math. Chem. 47 (2010) 891 (https://doi.org/10.1007/s10910-009-9609-2)

M. Mazloum-Ardakani, S. Lotfi, J. Ghasemi, A. Shababi, M. Noroozi, J. Serb. Chem. Soc. 74 (2009) 159 (https://doi.org/10.2298/JSC0902159M)

A. Benvidi, F. Heidari, R. Tabaraki, M. Mazloum-Ardakani, Spectrochim. Acta A 78 (2011) 1380 (https://doi.org/10.1016/j.saa.2011.01.014)

J. Beltran, N. Sanli, G. Fonrodona, D. Barron, G. Özkan, J. Barbosa, J. Anal. Chim. Acta 484 (2003) 253 (https://doi.org/10.1016/S0003-2670(03)00334-9)

B. Hemmateenejad, A. Abbaspour, H. Maghami, A. Foroumadi, Anal. Chim. Acta 607 (2008) 142 (https://doi.org/10.1016/j.aca.2007.11.043)

J. Barbosa, V. Sanz-Nebot, E. Torrero, Talanta 38 (1991) 425 (https://doi.org/10.1016/0039-9140(91)80081-A)

A. Benvidi, F. Heidari, M.M. Ardakani, A.M. Hajishabani, J. Ghasemi, Chin. Chem. Lett. 21 (2010) 725 (https://doi.org/10.1016/j.cclet.2010.01.015)

D. Almasifar, A. Forghaniha, Z. Khojasteh, J. Ghasemi, H. Sharghi, M. Shamsipur, J. Chem. Eng. Data 42 (1997) 1212 (https://doi.org/10.1021/je970091o)

M. Faraji, A. Farajtabar, F. Gharib, H. Ghasemnejad-Borsa, J. Serb.Chem.Soc. 76 (2011) 1455 (https://doi.org/10.2298/JSC100506129F)

M. Namazian, S. Halvani, J. Chem. Thermodyn. 38 (2006) 1495 (https://doi.org/10.1016/j.jct.2006.05.002)

18. H. Yousofian-Varzaneh, M. Namazian, H.R. Zare, S. Jahanbani, A. Benvidi, J. Fluorine Chem. 193 (2017) 33 (https://doi.org/10.1016/j.jfluchem.2016.11.007)

A. Lachenwitzer, N. Li, J. Lipkowski, J. Electroanal. Chem. 532 (2002) 85 (https://doi.org/ 10.1016/S0022-0728(02)00759-3)

R.E. Brito, J.M.R. Mellado, M.R. Montoya, A. Palma, R. Rodríguez-Amaro, M. Mayén, C. R. Chim. 20 (2017) 365 (https://doi.org/10.1016/j.crci.2016.05.004)

V. Bhatt, R. Jee, Anal. Chim. Acta 167 (1985) 233 (https://doi.org/10.1016/S0003-2670(00)84425-6)

A. Lorber, Anal. Chem. 58 (1986) 1167 (https://doi.org/10.1021/ac00297a042)

T. Momeni-Isfahani, A. Niazi, Spectrochim. Acta A 120 (2014) 630 (https://doi.org/10.1016/j.saa.2013.11.009)

N. M. Faber, Anal. Chem. 70 (1998) 5108 (https://doi.org/10.1021/ac980319q)

D. Wang, H. Zhang, R. Liu, X. Liu, J. Wang, Neurocomputing 173 (2016) 845 (https://doi.org/10.1016/j.neucom.2015.08.038)

J. Ferré, N. K. M. Faber, Chemom. Intell. Lab. Syst. 69 (2003) 123 (https://doi.org/10.1016/S0169-7439(03)00118-7)

J. A. Keith, E. A. Carter, J. Chem. Theory Comput. 8 (2012) 3187 (https://doi.org/10.1021/ct300295g)

J.T. Rubino, W.S. J. Pharm. Sci. 75 (1986) 182 (https://doi.org/10.1002/jps.2600750217)

M. Eslami, M. Namazian, H.R. Zare, J. Phys. Chem. B. 117 (2013) 2757 (https://doi.org/10.1021/jp3121325)

G. Douheret, Bull. Soc. Chim. Fr. (1968) 3122.

A. A. A. Boraei, J. Chem. Eng. Data 46 (2001) 939 (https://doi.org/10.1021/je010031p)

N.M. Rageh, E.M. Abdallah, J. Chem. Eng. Data 48 (2003) 1495 (https://doi.org/10.1021/je030153c)

Y. Ebead, H. Salman, M. Khodari, A. Ahmed, J. Mol. Liq. 154 (2010) 52 (https://doi.org/10.1016/j.molliq.2010.04.002)

Y. Altun, F. Koseoglu, J. Solution Chem. 42 (2013) 1691 (https://doi.org/10.1007/s10953-013-0056-0)

S. Li, M. Paleologou, W.C. Purdy, J. Chromotogra. Sci. 29 (1991) 66 (https://doi.org/10.1093/chromsci/29.2.66)

C. F. Bell, B. C. Gallagher, K. A. Lott, E. L. Short, L. Walton, Polyhedron 10 (1991) 613 (https://doi.org/10.1016/S0277-5387(00)83620-7)

S. V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic, M. G. Simic, JACS 116 (1994) 4846 (https://doi.org/10.1021/ja00090a032)

F. Borges, J. L. Lima, I. Pinto, S. Reis, C. Siquet, Helvetica Chimica Acta 86 (2003) 3081 (https://doi.org/10.1002/hlca.200390250)

I. Lamy, M. Seywert, M. Cromer, J.-P. Scharff, Anal. Chim. Acta 176 (1985) 201 (https://doi.org/10.1016/S0003-2670(00)81647-5)

Most read articles by the same author(s)