Modified lead dioxide for organic wastewater treatment: physico-chemical properties and electrocatalytic activity

Olesia Shmychkova, Tatiana Luk'yanenko, Larisa Dmitrikova, Alexander Velichenko


An investigation is reported on lead dioxide electrodeposition from methanesulfonate electrolytes, those additionally containing Ni2+ ions. It has been shown that lead dioxide electrodes micromodified by nickel that have different physico-chemical properties vs. nonmodified PbO2-anodes are formed during the deposition. Electrocatalytical reactivity of electrodes involved in respect to both the oxygen evolution, as well as to the electrooxidation of 2,4- dichlorophenoxyacetic acid was investigated. Processes of electrochemical oxidation of 2,4-D on various materials occur qualitatively the same and differ only in the rate. It was revealed that Ni-PbO2-anode possesses the highest electrocatalytic activity, the destruction rate of 2,4-D on it increases in 1.5 times in comparison with nonmodified lead dioxide.The COD of a 0.4 mM solution of 2,4-D, determined by the dichromate method, is 90.0 mg dm-3 which is 94% of the theoretical.


methanesulfonate electrolyte; oxygen evolution; 2,4-D; direct anodic oxidation

Full Text:

PDF (1,406 kB)


S. Cotillas,C. Saez, P. Canizares, I. Cretescu, M. A. Rodrigo, Sep. Purif. Technol. 194 (2018) 19 (

F. Islam, J. Wang, M. A. Farooq, S.S. Khan, L.Xu, J. Zhu, M. Zhao, S. Munos, Q. X. Li, W. Zhou, Environment International 111 (2018) 332 (

V. Iliev, D. Tomova, L. Bilyarska, J. Photochem. Photobiol. A 351 (2018) 69 (

A. Raschitor, J. Llanos, P.Canizares, M. A. Rodrigo, Chemosphere 182 (2017) 85 (

S. Zourab, N. Abu Ghalwa, F. R. Zaggout, M.Y. Al-Asqalany, N. Khdear, J. Dispersion Sci. Technol. 30 (2009) 712 (

K. H. Hama Aziz , H. Miessner, S. Mueller , A. Mahyar, D. Kalass, D. Moeller, I. Khorshid, M. A. M. Rashid, J. Hazard. Mater. 343 (2018) 107 (

B. P. Chaplin, Environ. Sci.: Processes Impacts 16 (2014) 1182 (

R. Vargas, C. Borras, D. Mendez, J. Mostany, B. R. Scharifker, J. Solid State Electrochem. 20 (2016) 875 (

P. Ruetschi, R. Giovanoli, Power Sources 13 (1991) 81

O. Shmychkova, T. Luk’yanenko, R. Amadelli, A. Velichenko, J. Electroanal. Chem. 774 (2016) 88 (

O. Shmychkova, T. Luk’yanenko, A. Yakubenko, R. Amadelli, A. Velichenko, Appl. Catal., B 162 (2015) 346 (

S. E. Treimer, J. Feng, D. C. Johnson, J. Electrochem. Soc. 148 (2001) E321 (

D. Pavlov, B. Monahov, D. Petrov, J. Power Sources 85 (2000) 59 (

S. Trasatti, G. Lodi, Electrodes of conductive metallic oxides. Part B, Elsevier, Amsterdam, Holland, 1981.

R. Amadelli, A. Maldotti, A. Molinari, F.I. Danilov, A.B. Velichenko, J. Electroanal. Chem. 534 (2002) 1 (

A. Lasia, Can. J. Chem. 75 (1997) 1615 (

B.S. Nielsen, J.L. Davis, P.A. Thiel, J. Electrochem. Soc. 137 (1990) 1017 (

J. Li, W. Guan, X. Yan, Z. Wu W. Shi, Catal. Lett. 148 (2018) 23 (

F. L. Souza, C. Saez, M. R. V. Lanza, P. Canizares, M. A. Rodrigo, Sep. Purif. Technol. 149 (2015) 24 (

O. Garcia, E. Isarain-Chavez, S. Garcia-Segura, E. Brillas, J. M. Peralta-Hernandez, Electrocatalysis 4 (2013) 224 (

R. Amadelli, L. Samiolo, A. De Battisti, A. Velichenko, J. Electrochem. Soc. 158 (2011) P87 (

M. Panizza, G. Cerisola, Electrochim. Acta 48 (2003) 1515 (


Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)