Gas chromatography–mass spectrometry system applied to determine botanical origin of various types of edible vegetable oils
Main Article Content
Abstract
This study represents a new strategy for discrimination of 59 samples of various cold-pressed, virgin and refined edible vegetable oils according to the corresponding botanical origin. Samples were produced from 17 plant species: olive, sunflower, safflower, flax, pumpkin, sesame, hemp, walnut, hazelnut, almond, grape, black cumin, apricot, plum, soybean, wheat and rapeseed. A GC/MS device performing in a ion current (IC) mode, combined with multivariate clustering, was employed in the analysis. Derivatization reaction occurred in the injector of a gas chromatograph. The discriminations between species were based on marker-peaks of 9 molecular ions of dominant fatty acid methyl esters (FAMEs), which were chosen as descriptors: m/z 268, 270, 292, 294, 296, 298, 324, 326 and 354. Dendrogram obtained after performing cluster analysis shows clear discriminations of the analyzed samples, based on the belonging botanical origin. These results demonstrate that IC-GC/MS approach with cluster analysis could be a useful tool in rapid screening for botanical origin of commercial samples of various edible vegetable oils.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. Azadmard-Damirchi, M. Torbati, J. Food Qual. Hazards Control 2 (2015) 38-44 (http://jfqhc.ssu.ac.ir/article-1-143-en.html)
J. López-Beceiro, R. Artiaga, C. Gracia, J. Tarrío-Saavedra, S. Naya, J. Mier, J. Therm. Anal. Calorim. 104(1) (2011) 169-175 (https://doi.org/10.1007/s10973-010-1165-2)
European Commission, Commission Regulation EEC/2568/91 as amended, Characteristics of olive oil and olive residue oil and on the relevant methods of analysis. OJEU. 310 (1991) L248 1-83.
B. Matthaus, F. Spener, Eur. J. Lipid Sci. Technol. 110 (2008) 597-601 (https://doi.org/10.1002/ejlt.200800118)
5. E. Ryan, K. Galvin, T.P. OConnor, A.R. Maguire, N.M. OBrien, Plant Food. Hum. Nutr. 62 (2007) 85–89 (https://doi.org/10.1007/s11130-007-0046-8)
WHO/FAO Report of a Joint Expert Consultation, Diet, nutrition and the prevention of chronic diseases, WHO Technical Report Series 916, World Health Organization, (2003), Geneva, Switzerland.
T. Cserháti, E. Forgács, Z. Deyl, I. Miksik, Biomed. Chromatogr. 19 (2005) 183–190 (https://doi.org/10.1002/bmc.486)
G. Norton, Inform by Am. Oil Chem. Soc. 28(2) (2017) 12-14.
E. Perri, C. Benincasa, I. Muzzalupo, Olive Oil Traceability. In I. Muzzalupo (Ed.), Olive germplasm – the olive cultivation, table olive and olive oil industry in Italy, InTechOpen, (2012), Rijeka, Croatia: pp. 265-286.
F. Hashempour-Baltork, M. Torbati, S. Azadmard-Damirchi, G.P. Savage, Trend. Food Sci. Technol. 57 (2016) 52-58 (https://doi.org/10.1016/j.tifs.2016.09.007)
S. Primrose, M. Woolfe, S. Rollinson, Trend. Food Sci. Technol. 21(12) (2010) 582-590 (https://doi.org/10.1016/j.tifs.2010.09.006)
S. Krist, G. Stuebiger, S. Bail, H. Unterweger, J. Agric. Food Chem. 54(17) (2006) 6385–6389 (https://doi.org/10.1021/jf060500x)
L.A. Berrueta, R.M. Alonso-Salces, K. Héberger, J. Chromatogr. A. 1158 (2007) 196–214 (https://doi.org/10.1016/j.chroma.2007.05.024)
P. Oliveri, G. Downey, Trend. Anal. Chem. 35 (2012) 74–86 (https://doi.org/10.1016/j.trac.2012.02.005)
F. Ulberth, M. Buchgraber, Eur. J. Lipid Sci. Technol. 102 (2000) 687–694 (https://doi.org/10.1002/1438-9312(200011)102:11<687::AID-EJLT687>3.0.CO;2-F)
J. M. Bosque-Sendra, L. Cuadros-Rodríguez, C. Ruiz-Samblás, A.P. la Mata, Anal. Chim. Acta. 724 (2012) 1-11 (https://doi.org/10.1016/j.aca.2012.02.041)
D. Brodnjak-Vončina, Z. Cencič Kodba, M. Novič, Chemom. Intell. Lab. Syst. 75(1) (2005) 31-43(https://doi.org/10.1016/j.chemolab.2004.04.011)
P. de la Mata-Espinosa, J.M. Bosque-Sendra, R. Bro, L. Cuadros-Rodríguez, Talanta 85(1) (2011) 177-182 (https://doi.org/10.1016/j.talanta.2011.03.049)
G. Fang, J.Y. Goh, M. Tay, S.F.Y. Li, Food Chem. 138(2–3) (2013) 1461-1469 (https://doi.org/10.1016/j.foodchem.2012.09.136)
A.M. Jiménez-Carvelo, M.T. Osorio, A. Koidis, A. González-Casado, L. Cuadros-Rodríguez, LWT - Food Sci. Technol. 86 (2017) 174-184 (https://doi.org/10.1016/j.lwt.2017.07.050)
F. Peña, S. Cárdenas, M. Gallego, M. Valcárcel, J. Chromatogr. A. 1074(1–2) 2005 215-221 (https://doi.org/10.1016/j.chroma.2005.03.081)
F. Priego Capote, J. Ruiz Jiménez, M.D. Luque de Castro, Anal. Bioanal. Chem. 388(8) (2007) 1859-1865 (https://doi.org/10.1007/s00216-007-1422-9)
C. Ruiz-Samblás, F. Marini, L. Cuadros-Rodrígue, A. González-Casado, J. Chromatogr. B. 910 (2012) 71-77 (https://doi.org/10.1016/j.jchromb.2012.01.026)
C. Ruiz-Samblás, J.M. Cadenas, D.A. Pelta, L. Cuadros-Rodríguez, Anal. Bioanal. Chem. 406(11) (2014) 2591–2601 (https://doi.org/10.1007/s00216-014-7677-z)
L. Zhang, P. Li, X. Sun, X. Wang, B. Xu, X. Wang, F. Ma, Q. Zhang, X. Ding, J. Agric. Food Chem. 62(34) (2014) 8745-8751 (https://doi.org/10.1021/jf501097c)
R. Aparicio, R. Aparicio-Ruiz, Chemometrics as an aid in authentication. In M. Jee (Ed.), Oils and fats authentication, (2002), Blackwell publishing, Oxford, UK, pp. 156-180.
B. Škrbić, J. Cvejanov, J. Serb. Chem. Soc. 82(6) (2017) 711-721 (https://doi.org/10.2298/JSC170219034C)
O. Hammer, D.A.T. Harper, P.D. Ryan, PAST: paleontological statistics software package for education and data analysis, (2001), Palaeontologia Electronica 1, Coquina Press, Columbia.
A. Cert, W. Moreda, M.C. Perez-Comino, J. Chromatogr. A. 881 (2000) 131-148 (https://doi.org/10.1016/S0021-9673(00)00389-7)
M.H. Gordon, Analysis of minor components as an aid to authentication. In M. Jee (Ed.), Oils and Fats Authentication, (2002), Blackwell publishing, Oxford, UK.